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ABSTRACT OF THE DISSERTATION

Connections with Bohmian Mechanics

by James Oliver Taylor

Dissertation Director: Sheldon Goldstein

We begin by formulating non-relativistic Bohmian mechanics for theories in which the

wave functions are sections of a Hermitian vector bundle over a Riemannian manifold.

We give geometric interpretations of the Pauli equation and the Dirac equation. We

then explain the influence of non-trivial topology in formulating Bohmian theories and

use that to explain the quantum story of identical particles. We take a break from

Bohmian mechanics briefly to investigate when the covariant derivatives of a mapping

between manifolds may be used in a Taylor polynomial fashion in order to find the best

polynomial approximation to the map. We finish by first formulating and then giving

some results about a new algorithm for computing solutions to Schrödinger’s equation.
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Chapter 1

A quick orientation

1.1 A brief word about Bohmian Mechanics

Briefly, Bohmian mechanics is a quantum theory which considers the state of an N -

particle system to be the wave function and the locations of the N particles. The

dynamics is specified by Schrödinger’s equation and a first-order equation for the evo-

lution of the positions. Simply put, the particles are guided by the wave which is why

wave behavior is seen. The particle behavior occurs because there are particles. Al-

though not an obvious fact, it is true that the entire quantum measurement formalism

can be derived from an analysis of Bohmian mechanics [25, 27]. One of the advantages

of Bohmian mechanics is that it is easy to understand the starting point. There are

no axioms about measurements. The whole theory is the dynamical system mentioned

above. Although Bohmian mechanics is different from classical mechanics as its laws

of motion are different, it is not a philosophically radical departure from the starting

point of mechanics. That is to say, it is still based on a particle ontology.

1.2 Organization of thesis

Chapter 2 gives a rough sketch of the Bohmian story. It describes the simplest versions

of Bohmian mechanics and states a few important results. It finishes by relating the

historical story of how Bohmian mechanics has been viewed by and has influenced

standard quantum theory as well as describing some of the more recent results involving

quantum field theory and relativistic Bohmian mechanics.
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Chapter 3 contains generalizations of non-relativistic Bohmian mechanics. We for-

mulate Bohmian dynamics for wave functions as sections of a complex Hermitian vec-

tor bundle over a Riemannian manifold. This is rather straightforward. From this

perspective, we then explain how the Pauli equation can be roughly viewed as using a

generalization of the Laplacian. We finish by explaining how the Dirac equation and

the gamma matrices arise directly from a Bohmian point of view.

Chapter 4 explains the influence of topology on theory formation from a Bohmian

perspective. Our primary example in that chapter is the Aharonov-Bohm effect. We

explain from three different perspectives how the famous phase arises as “one goes

around a non-contractible loop”. Quite generally, to specify a Bohmian theory on a

multiply connected space, one needs to choose a character of the fundamental group of

the configuration space. We shall explain how a character arises in three distinct, but

ultimately equivalent, ways. Having to choose a character is what we call the Abelian

Quantization Principle. We conclude the chapter by quantizing the classical system of

a particle moving along a circle immersed in a constant electric field.

Chapter 5 discusses Bohmian mechanics for many particles. Most of the chapter

describes the setup for identical particles. The setup starts with realizing that the

multiply connected space of N -element subsets of physical space is the appropriate

configuration space for identical particles. As the fundamental group has two charac-

ters, we have the choice of bosons or fermions. Our discussion also covers the case of

identical particles with spin. In this case, the wave function is a section of a vector

bundle over the configuration space; the fiber is the tensor product of the 1-particle

spin space with itself N times using the physical positions as the index set for the ten-

soring. We apply the Abelian Quantization Principle to conclude the usual Bose-Fermi

alternative. The context of identical particles is also an excellent source of examples for

better understanding the generality of the Abelian Quantization Principle. The spin

bundle that we define is also rather mathematically interesting. We give a rough sketch

of some triviality and non-triviality results about these bundles. The full story is given

in an appendix. We then give an alternative explanation of the Bose-Fermi alternative,

one which does not rely upon the Abelian Quantization Principle. Unlike the Abelian
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Quantization Principle approaches, the argument we give cannot be made in standard

quantum mechanics; it needs Bohmian mechanics in an essential way. Somewhat iron-

ically, this story is closest to what the textbooks would seem to want to use. We finish

the chapter with a speculative idea about a theory of distinguished particles in which

the particles are, fundamentally, identical. More to the point, the differences in the

particles are in the wave function and arise in a fashion similar to why energy eigen-

states arise. In other words, for a particle to behave as an electron, the wave function

needs to be special. We shall only give the setup and leave a more detailed explanation

for other work.

Chapter 6 is a chapter with no Bohmian mechanics in it whatsoever. Nevertheless,

the work in that chapter was inspired by Bohmian mechanics and, in particular, some

of the material is required for a full understanding of some of the work in chapter 7.

Briefly, the chapter starts with explaining how to find higher covariant derivatives of a

mapping between manifolds. After establishing the higher order chain rules and some

key lemmas, the chapter pursues the question of Taylor polynomial approximations of

these mappings. The idea is that a connection gives a local linear structure to the

manifold. Using these linear structures, one can view any mapping between manifolds

with connections as a mapping between vector spaces, at least between open subsets

of the vector spaces. Given a degree, we can then try to find the best polynomial

approximation to the mapping; this is a Taylor polynomial as in ordinary multi-variable

calculus. We then can ask the question whether the Taylor polynomials are the same

as a Taylor-type polynomial formed out of the covariant derivatives. Generically, this

is not the case. We investigate when it is. The short answer is that the range needs

to be flat although this statement needs to be understood properly. Examples of maps

whose ranges are sufficiently flat are sections of vector bundles, maps into flat spaces,

and maps which map geodesics to geodesics.

The final chapter describes two new algorithms for solving Schrödinger’s equation.

The algorithms are based upon Bohmian ideas, but Bohmian mechanics is irrelevant to

their implementation. Essentially, we write the Schrödinger equation as two coupled,

real equations. The algorithms decouple the equations in order to solve one first and
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then the other. We use trajectories as a way of approximating the solutions of these

PDEs. The results are rather limited. We do have a small set of examples in which we

have excellent, robust convergence. We also use the algorithm to derive the propagator

for quadratic potentials. We finish the chapter with deriving a PDE for the Bohmian

family of trajectories, one which we can find solutions for before solving Schrödinger’s

equation. The PDE involves derivatives up to the fourth order and is very much a

nonlinear PDE. Nevertheless, we do solve the equation in a special situation. The

formulations of the PDE and the algorithms are for Bohmian systems on Riemannian

manifolds, but only for complex-valued wave functions.

The appendices largely contain known material presented in what appears to be

new ways. Appendix A discusses the set-based tensor product with a remark about its

uses in connection with contractions. Appendix B discusses a useful basis frame for a

bundle and has a short discussion on curvature. Appendix C discusses a technical point

about what to do when the Hamiltonian is not essentially self-adjoint and explains what

a Bohmian viewpoint can add to the discussion. Appendix D is actually new material.

It gives an in-depth discussion of the triviality and non-triviality of the bundles arising

in the identical particle discussion. Appendix E gives a heuristic answer to a question

that the Bohmian PDE raised; generically, a full set of Bohmian trajectories arises from

exactly one initial wave function. Appendix F is a supplement to Chapter 7. It discusses

the derivative of the determinant on manifolds as well as establishing the usefulness of

characteristics in solving the continuity equation and the Hamilton-Jacobi equation on

Riemannian manifolds.
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Chapter 2

The Bohmian story

2.1 Bohmian mechanics

Bohmian mechanics is a theory about particles with definite locations. The fundamental

objects to specify are the trajectories in physical space of these particles. The object

which defines the trajectories is the wave function, familiar from quantum mechanics.

More precisely, the state of the system in Bohmian mechanics is given by the pair (Q,ψ);

Q = (Q1, . . . ,QN ) ∈ R3N is the configuration of the N particles in our system and ψ

is a wave function on the configuration space R3N , as usual in a quantum theory. The

state of the system changes according to Bohm’s equation and Schrödinger’s equation:

dQk

dt
=

~

mk
Im

(ψ,∇kψ)
(ψ,ψ)

(Q1, . . . ,QN ) =: vψk (Q) k = 1, . . . , N (2.1)

i~
∂ψ

∂t
= −

N∑
k=1

~
2

2mk
∆kψ + V ψ = Hψ, (2.2)

where V is the potential function and (φ, ψ) is the inner product on the value space,

which we call the local inner product, in distinction from the inner product on the

Hilbert space of wave functions. For complex-valued wave functions, the potential is a

real-valued function on configuration space and the inner product is φ̄ψ, where the bar

denotes complex conjugation.

2.2 Spinor Bohmian mechanics

To incorporate spin, the story barely changes. The value space for the wave function

changes from C to the spinor space, W . By assumption, for one particle, W is a

complex, irreducible representation space of SU(2), the covering group of the rotation

group SO(3). If it is the spin s representation then W = C
2s+1. The representation of
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the group SU(2) leads to a representation of the group’s Lie algebra which is the same

Lie algebra as that of SO(3). The operators Sx, Sy, Sz are the three generators of the

representation that correspond to the infinitesimal rotations about the x-axis, y-axis,

and z-axis, respectively. They form the spin vector Ss = (Sx, Sy, Sz)s. For N particles,

the value space becomes C2s1+1 ⊗ · · · ⊗C2sN+1, where the ith particle has spin si. The

spin vector for each particle, S(i) := Id⊗ . . .⊗ Id⊗ Ssi ⊗ Id⊗ . . .⊗ Id, is the 1-particle

spin vector for spin si acting only on the ith factor:

S(i)(w1 ⊗ · · · ⊗ wN ) := w1 ⊗ · · · ⊗ wi−1 ⊗ Ssi(wi)⊗ wi+1 ⊗ · · · ⊗ wN .

The potential V takes the form

U(q) +
N∑
i=1

µiS
(i) ·B(qi)

where U is a real-valued function and B is the magnetic field. Bohm’s equation is

unchanged, except we now interpret (ψ, φ) as a spinor inner product. The elements of

the spin spaces are spinors, a terminology we use even in the case of the many particle

spin space.

2.3 The emergence of the quantum formalism

In this section, we shall give a rough explanation for how the quantum formalism

emerges from Bohmian mechanics. The full explanation may be found in [25, 27]. The

collapse of the wave function is the simplest part of the story. The hardest part, and the

one which we shall not say very much about, is the emergence of the correct empirical

statistics in measurements. Somewhere in between in difficulty is the understanding of

why self-adjoint operators are related to measurements. The discussion in this section

is only for spinless particles.

We start with the notion of the conditional wave function. The wave function in

Bohmian mechanics is the wave function for the entire universe. What about wave

functions for a subsystem? A subsystem is some collection of particles. We shall use X

for the system’s actual configuration and use x as a variable on the configuration space
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of those particles. The particles not involved in the subsystem will be called the envi-

ronment and we shall use Y for its actual configuration and y as the variable. The wave

function of the universe, Ψ, may then be written in terms of those two variables: Ψ(x, y).

The Bohmian velocity for the universal configuration is vΨ(X,Y ). To obtain a wave

function for the subsystem, we define the conditional wave function ψ(x) := Ψ(x, Y ).1

Immediately, one sees that the Bohmian velocity of the conditional wave function at

X agrees with the actual Bohmian velocity. The conditional wave function’s evolution

is governed by the evolution of Ψ as well as the evolution of the environment Y . In

certain situations, the conditional wave function will evolve according to a Schrödinger

equation defined on the subsystem; we then say that the conditional wave function is

an effective wave function. In other situations, the conditional wave function will not

evolve according to Schrödinger’s equation.

In a measurement situation, the system under consideration is assumed to have

an effective wave function. During a measurement, the environment’s evolution is

influenced by the evolution of the system. This generally will lead to the system’s wave

function no longer evolving according to a Schrödinger equation. Instead, it evolves in

a completely different manner. This is the process of collapse. After the measurement

is over, the conditional wave function often returns to being an effective wave function.

This is how collapse occurs in Bohmian mechanics. In terms of the actual Bohmian

evolution of the universe, nothing special happens when collapse occurs. Furthermore,

collapse is not a precise statement; although the conditional wave function exists and

changes as it changes, the length of collapse is presumably the period of time in which

conditional wave function is not considered to be an effective wave function. This, of

course, depends on the level of approximation desired in the evolution of the conditional

wave function.

In quantum mechanics, self-adjoint operators are related to measurements. What

do these very abstract mathematical objects have to do with measurements? Math-

ematically, self-adjoint operators bijectively correspond to projection-valued measures

1For particles with spin, R. Tumulka has recently pointed out that density matrices replace the
conditional wave function.
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(PVM); this is the spectral theorem of functional analysis. The measure is a mea-

sure on the results of the experiments. They encapsualte the relevant behavior of the

environment. The projection implements the collapse of the wave function. This is

true for repeatable measurements. In more general measurements, such as when the

measurement cannot be repeated, the projections are replaced with positive operators.

There remains the question of the probabilities. That is to say, we need to explain

why |ψ|2 gives the distribution of the results of measurements. In short, the empirical

agreement between Bohmian mechanics and standard quantum mechanics is grounded

in equivariance. In Bohmian mechanics, if the configuration is initially randomly dis-

tributed according to |ψ0|2, then the evolution is such that the configuration will be

distributed according to |ψt|2 at time t. This is equivariance. More precisely, the mea-

sure ρ0 = |ψ0|2 can evolve either according to the evolution of ψ under the Schrödinger

evolution or as a density evolving according to the Bohmian flow. Equivariance is the

statement that those two evolutions agree. The continuity equation, a consequence of

Schrödinger’s equation, is

∂ρ

∂t
+∇ · (ρvψ) = 0 (2.3)

and it guarantees equivariance.

This answer is rather lacking in usefulness, even though it may seem satisfying.

Bohmian mechanics is a deterministic dynamics. In particular, the initial configuration

of the universe is whatever it is. A satisfactory statement, and a true statement, would

be that for a typical initial configuration of the universe, the universe evolves in such

a way that the experimental results of quantum mechanics emerges. Typicality is with

respect to |Ψ0|2. This is what is explained in [25] and I cannot find a short way of

explaining it appropriately.

2.4 Particular experiments

Any theory, no matter how beautiful its mathematics or sound its explanations in ab-

stract terms, must give a convincing explanation of important experiments. We collect

here some of the most prominent experiments in quantum mechanics and explain the
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picture as presented by Bohmian mechanics. We emphasize that this is technically un-

necessary as the experimental information is encoded in |ψ|2. Thus the quantum analy-

sis of the system is sufficient even from a Bohmian perspective. Indeed, the point of the

quantum formalism, as seen from the Bohmian perspective, is as a thermodynamical-

type formalism which allows one to predict the outcome of experiments without having

to do a detailed analysis of the, rather complicated, Bohmian motions. Nevertheless, it

is important to appreciate what the measurements are or, more appropriately, are not

measuring.

All of the experiments below are described in very rough terms; our intention is to

only give a rough story of the situation and not a detailed analysis beyond the need for

an informative and plausible argument.

2.4.1 A measurement of “momentum”

Let us consider a free particle. The experiment is the following. We start with a

wave function essentially supported around a position q0; this can be created by a

nondestructive measurement of position. We then let the system evolve and measure

the position at some later time t. A wave packet, with wabe vector k, will evolve so that

its center is approximately q0 + ~

mkt, i.e. if ψ0 ≈ A(q)eik·q with A(q) slowly varying for

most of its support and the support being relatively small centered around q0, then it

will approximately evolve to ψt ≈ At(q)eik·q where At has a somewhat larger support

with center qt := (q0 + ~

mkt). If we do a position measurement at time t, we shall find

the particle in the packet i.e. near qt. Thus, it might seem natural to regard as the

particle’s momemtum mqt−q0
t = ~k. For a general wave function we then consider a

superposition of such initial wave packets. Given enough time, they will separate into

different wave packets whose centers are quite distant. The particle will be distributed

according to the norm squared of the coefficients in the original superposition. That

is to say, we shall see the distribution of the Fourier transform when we do repeated

measurements. Notice that all we needed to do in order to measure momentum in this

sense is to be able to measure the approximate position of the particle.

Is this a measurement of the initial momentum of the actual Bohmian particle?
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Absolutely not. There is no reason to believe that the particle which ends up in the

wave packet for momentum ~k actually has that as an initial momentum. Additionally,

we do not have conservation of the quantity mv.

2.4.2 Scattering experiments

The above momentum measurements lead to a nice explanation of scattering experi-

ments. Shoot at a system of interest a particle in a wave packet, one with a prescribed

momentum ~k0. It will interact with the system and then separate from the system

and again proceed freely. By setting up detectors, one can find the position of the

particle and use the momentum measurement idea to deduce ~kt. By repeating this,

one can find the distribution of the Fourier transform of the resultant wave function

after interacting with the system.

What does this tell us about the scatterer and what does it do to the scatterer?

To answer this, we should write down the Hamiltonian of the combined system. We

have the Hamiltonian of the target, Ho, and of the projectile, Hp. There also needs

to be an interaction term Hint which should be localized so that it is significant only

when the projectile is near the target. The projectile’s Hamiltonian shall be assumed

to be free. We wish to determine what Vo is. Let us assume that Ho has eigenstates

and that ψ0 is a product of an eigenstate of Ho with a wave packet of momentum ~k

directed towards the interaction region. That is to say, assume ψ0 = |EM 〉⊗ |φk〉 where

Ho|EM 〉 = EM |EM 〉. Let H be the Hamiltonian of the system, i.e. H := Ho+Hp+Hint.

We then have that Hψ0 ≈ EMψ0 − ~
2k·k
2m ψ0 where the approximation is coming from

assuming that the wave packet is essentially a plane wave on its support and that the

initial wave function is such that Hint is irrelevant. The evolution is such that the packet

travels into the target, interacts with it, and then leaves the interaction region. Let Ut

be the unitary evolution operator; thus HUtψ0 = UtHψ0. When the wave function is

supported away from the interaction region, then H ≈ Ho+Hp. Thus, if ψt is such that

this is a good approximation, then (Ho + Hp)Utψ0 = Ut(Ho + Hp)ψ0 and we see that

ψt is an approximate eigenstate of the system with the same eigenvalue. Thus, Hψt ≈

(EM − ~
2k·k
2m )ψt. After the interaction with the object, the state can be represented
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approximately as ψt ≈
∑

n,lCn,l|En〉 ⊗ |φl,t〉 where φl is a wave packet has momentum

~l, evolves under the free evolution, and originates at the target’s location. Applying H

to this state, we find Hψt ≈
∑

n,l(En−
l·l
2 )Cn,l|En〉⊗ |φl,t〉. Since the terms in the sum

are approximately orthogonal (approximately disjoint supports in configuration space

because of the wave packets), we find that EM − ~
2k·k
2m = En − ~

2l·l
2m for every term in

the sum such that Cn,l 6= 0. That is to say, the eigenvalue differences in the initial

and final state of the target are equal to the differences in the energy of the projectile,

as provided by a momentum measurement. By using the superposition principle, one

sees that this measurement procedure will only yield the eigenvalue differences; the

differences are the only physically relevant information since the ground state energy

corresponds to an irrelevant choice of a constant in the potential.

This explains the discrete values obtained when we measure energy for systems with

bound states. In particular, thinking of photons as particles, if we have various atoms

and have photons interacting with them, then the energy differences in the photons lie

in a prescribed set of values which depends on the particular type of atom that they

are interacting with.

As a final note about scattering experiments, observe that in Bohmian mechanics

we may also analyze time-of-arrival experiments. Such experiments do not quite fit

the quantum formalism, but physicists, of course, do have methods for obtaining the

correct predictions. An analysis of such experiments may be found in [22].

2.4.3 The double-slit experiment

The double slit experiment is one of the most famous experiments in all of quantum

mechanics. It is often taken to be the example of all the quantum mysteries. Bohmian

mechanics accounts for the phenomena in a trivial manner.

The setup is that of particles being directed towards a system with two slits and a

position detector, e.g. a screen, placed a distance away from the slits. The system is

arranged so that the wave function is approximately a plane wave when it hits the two

slits. After it passes through the slits, there will be interference from the two emerging

waves. The interference pattern can be seen on the screen, built up out of many dots.
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If the particles are sent one at a time, this pattern is built up over time. This is often

considered to be rather mysterious. Bohmian mechanics explains that the dots on the

screen occur because there are particles hitting the screen; the pattern develops as a

result of the particles being guided by a wave.

If one of the slits is closed, then the interference pattern disappears. This follows

since there is now only one wave and thus there is no interference, ignoring diffraction.

The particle, being guided by the wave, will also not reflect any interference.

There is a final modification of this experiment and this is supposed to be the most

troubling aspect of the experiment. Place a detector in such a way that the slit which

the particle goes through is identified, but arrange it so that, classically at least, one

would expect no disruption in the motion of the particle. It happens that there is a

disruption in the motion. The reason is that the wave function is not a wave in physical

space, but rather it is a wave in configuration space; detection changes the relevant

configuration space. In this experiment, as in all experiments, we are using the effective

wave function of the system. This is the actual wave function of the entire universe with

the irrelevant degrees of freedom conditioned on. Furthermore, we are assuming that

this conditioned wave function is evolving according to Schrödinger’s equation for the

system. When we detect the position of the particle, more degrees of freedom become

relevant; in particular, the positions of the particles in the detector. This separates

the two parts of the projectile’s wave function. That is, the conditional wave function

ceases to be an effective wave function. We can no longer use the Schrödinger evolution

of the system to evolve the original wave function. But, once we take into account

that the two parts of the wave function have separated and that only one portion is

relevant, the one with the actual particle as reflected in the environment, then we can

return to evolving that portion according to Schrödinger’s equation for the system. The

conditional wave function automatically takes into account the separation and collapse;

all that one needs to check is that the conditional wave function is effective.
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2.4.4 Schrödinger’s cat

Picking up from the end of the double slit experiment discussion, we can ask about

Schrödinger’s cat. The experiment is to hook up a quantum system to the fate of a cat.

That is, do some measurement of some quantum mechanical quantity, such as a spin

measurement, and decide the fate of a cat based on the outcome of that experiment.

The dilemma comes from the axioms of quantum mechanics. When is the cat’s fate

decided? Does the collapse of the system occur only when someone with a PhD comes

along [9]? Or can a cat collapse itself because it is alive or because it is a big system?

Bohmian mechanics resolves it by stating that the cat has a definite state because

there are actual particles with definite positions. But predicated upon this is that the

state is recognizable. This really means that the wave function’s support decomposes

into two, essentially disjoint, supports. This is where size matters. Indeed, imagine

a cat which is alive versus one which is dead. Just by breathing, having the blood

flowing, wagging the tail, etc., many particles are in a different position than they

would be if the cat was dead. Let us say that the average separation of each particle

in the live cat versus the dead cat is about 1 cm. Making the assumption that there

about 1023 particles in the cat, we find that the separation distance in configuration

space is roughly
√

1023 cm; this is a rather large distance. One would therefore expect

that the configurations corresponding to the live or dead cat remain separated. That

is, we have an effective collapse.

The cat is illustrative of a different side of collapse. For a microscopic system, it is

the entanglement of the environment which causes the collapse. But if one enlarges the

system to include the relevant environmental degrees of freedom, then the collapse does

not happen. Instead, one has a very large separation between the different possibilties.

It is the location of the particle which then determines the relevant packet. But it

is only an approximation to discard the other parts of the wave function. For the

conditional wave function, there is no approximation except for when to consider it an

effective wave function. For macroscopic systems, the system itself evolves in such a way

that portions of the wave function will have negligible influence on the configuration’s
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evolution.

2.4.5 Position measurements

We now describe a measurement of the position operator which does not accurately

measure the position of the particle. By a measurement of the operator, we mean an

experiment whose statistical information is encapsulated in the associated PVM. In the

case of position, given a wave function ψ, a measurement of position is one in which the

result R is distributed according to |ψ|2 as the measurement is repeated on identically

prepared systems.

The measurement described in this section will satisfy that criterion, but whether

physicists would accept the measurement or not as a measurement of position is not

clear to this author. But, from a Bohmian perspective, it is definitely not a measurement

of position. Bohmian mechanics provides a way of actually determining whether the

experiment did measure what it was supposed to have measured.

Before discussing the measurement, we need to mention some important facts about

Bohmian mechanics. It is a first-order theory. This implies that trajectories do not

cross. We have already mentioned that it is equivariant. In one dimension, this means

that if q0 is the initial starting point, then qt is, more or less, uniquely defined by∫ q0

−∞
|ψ0|2(x)dx =

∫ qt

−∞
|ψt|2(x)dx.

As a particular application, if |ψt|2 is periodic in time, then the Bohmian velocities

are periodic in time with the same period. We emphasize that this is special to one

dimension.

Our example is in one dimension with the harmonic oscillator potential V (x) = x2,

ignoring constants. The evolution of any wave function is fully periodic in time with

period 4π and periodic up to a sign in 2π units of time. In π units of time, the wave

function ψ will be iψ(−x). Let xm be the median of the probability distribution |ψ|2.

If a particle starts to the left of the median, then it remains to the left of the median.

Thus, if it begins to the left of xm, then at time t = π, it is to the left of the median at

that time which is −xm.
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If we look at the probability distribution, we will see that it has been reflected

across the origin. The position operator at t = π, Q̂π, is therefore the same as minus

the position operator at t = 0, −Q̂0. This means that we can measure the initial

position operator by measuring the position operator at time t = π and then taking

minus that result as the result for measuring the initial position operator. If we assume

that the measurement of the operator at time t = π accurately measures the position of

the particle at that time, then the above measurement for Q̂0 disagrees with the actual

initial position except if the particle initially started at the median. We thus have a

“measurement” of position which disagrees with the Bohmian position.2

2.4.6 Measurements of “spin”

Measurements of spin are the canonical measurements to discuss in foundational mat-

ters. The basic experiment involves the Stern-Gerlach device. Essentially, a neutral

spin-1
2 particle is shot into a region with an inhomogeneous magnetic field. This mag-

netic field interacts with the spin of the particle and forces the particle to move up or

down depending on whether the spin is up or down in the appropriate direction. This

is a repeatable experiment. And, as is well known, a particle that has been measured

spin up in the x direction and then spin up in the z direction and is then measured in

the spin x direction, will have spin up only 50% of the time.

Bohmian mechanics adds just a little to the picture. The Stern-Gerlach device splits

the wave function into two pieces. The particle travels in the support of just one piece.

If a measurement of the position of this particle is made, then the conditional wave

function changes; the “empty” packet is discarded. But if the system is kept isolated,

then the conditional wave function remains effective. In particular, one might be able

to arrange it so that the two pieces recombine. This is why collapse can be a tricky

concept and best discussed in the context of Bohmian mechanics, a theory in which

collapse can be analyzed.

2Another example, in a certain sense simpler, is the two-dimensional oscillator. For that example,
the wave function evolution is still periodic in time, but the different trajectories do not have a common
period. See [27] for details.
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The most interesting aspect of the Bohmian story of spin measurements is the

following, as suggested in [4]. Prepare a system with sufficient symmetry and the

particle will go up or down based on whether it is above or below the line of symmetry.

This is due to the fact that Bohmian mechanics is a first-order theory. One can setup

the Stern-Gerlach device so that going up registers as the particle being spin up in

the z direction. One can also arrange the magnets, e.g. reverse the polarities, so that

going up represents being in the spin down state of the z direction. Thus, depending on

the setup of the magnets, the very same Bohmian initial conditions for the system will

give different results for the two experiments. This implies that the spin observable is

not an intrinsic property of the system; rather, the spin observable intimately depends

on the details of the experiment being done. That is essentially why the theorems

proving Bohmian mechanics impossible do not work. The theorems assume a naive

realist view towards the operators. But the operators are just compact descriptions of

the probability measure for the outcomes of experiments. There does not have to be

an underlying quantity common to experiments measuring the same “observable”.

2.5 Global existence and uniqueness

There are global existence results for complex-valued wave functions where the configu-

ration space is an open subset of Rn. Although the dynamics is undefined at the nodes,

it has been shown that typically the particle evolution does not reach the nodes. Indeed,

it was shown in [10] that there is global existence in time for typical initial conditions

where typicality is with respect to the measure |ψ|2. This includes showing that the

particles do not reach, in finite time, the nodes, the singularities of the potential, or

spatial infinity.

The proof is rooted in equivariance although equivariance only holds once the exis-

tence results are established. Nevertheless, the basic idea is that the density vanishes

at the places where the particle dynamics ceases to exist. Since particles flow with the

density, this suggests that only a set of measure zero will reach the nodes, singularities

or infinity. The proof requires a series of estimates involving the flux around these

points. That typicality is all that can be expected is demonstrated with a variety of
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examples. These results do need to be extended to a more general setting, but the

expectation is that this is just a straightforward extension of the arguments.

2.6 The historical story, hidden variables, and nonlocality

Here is a rough sketch of the history. As I am not a qualified historian, nor did I do

any personal research into the story, please take it only as my personal viewpoint.

Bohmian mechanics has its roots at the very start of quantum theory. Indeed,

the folklore is that Einstein originally envisioned the electromagnetic wave as guiding

the particulate photons. Although this came to nothing, it is not that distant from

the Bohmian viewpoint. Bohmian mechanics was presented by Louis de Broglie to the

distinguished physicists of the Solovay Congress. The lore has it that de Broglie’s model

was a bit overly complicated and that he did not answer a question from Pauli in a

satisfactory manner. Thus, they dismissed the theory. Also around this time, Madelung

came up with a hydrodynamic picture which chemists enjoy citing. It was also pretty

close to Bohmian mechanics. Nevertheless, the idea did not take hold.

Instead, the quantum orthodoxy decided that such attempts were impossible. They

called such models hidden variable models. The idea is that the state of the system is

the wave function, and that any attempt to add additional variables, i.e. the hidden

variables, in order to deduce the measurement axioms is doomed to failure. The first

“proofs” were given by von Neumann in the early 1930’s. As usual, the mathematics

was fine, but the assumptions of what a hidden variable theory had to satisfy were too

restrictive.

In the early 1950’s, Bohm wrote a book on quantum theory, a book which is still

cited today as a good quantum book. In his book, he presented a “no hidden variables”

argument. Rumor has it that Bohm said that Einstein had convinced Bohm that

Bohm’s argument did not work. His faith shaken in the standard dogma, Bohm came up

with a counterexample to the “no hidden variables” theorem of von Neumann which we

now call Bohmian mechanics. Excitedly, he published his work. The physics community

responded negatively, but not convincingly.



18

One mistake that Bohm made was this emphasis on the quantum potential. This was

an attempt to make the theory appeal to classical intuitions. But as Bohmian mechanics

is not at all a classical theory, this made the theory rather complicated and it was

deemed to be ad hoc. Nevertheless, the physics community now had a counterexample

to the “no hidden variables” theorems. Instead of resolving the contradictions, the

physicists not only ignored it, but continued to teach students that the type of theory

that Bohm had formulated was necessarily incompatible with quantum predictions.

Indeed, it seems that even Bohm abandoned his theory for a long while. It lay

dormant until J. S. Bell came across Bohm’s theory. This was a revelation to Bell,

resulting in one of the most shocking theoretical and experimental results of the latter

half of the 20th century. When Bell saw Bohm’s theory, he realized two things. One

was the simple fact that it worked. Rather than focussing on the quantum potential, he

focussed on the density’s being equivariant. This allowed him to easily formulate the

theory for spin. But, more importantly, he realized that the theory was nonlocal. This

is obvious as the wave function is defined on the configuration space, not on physical

space. In fact, when evaluating the Bohmian velocity of a particle, one must, in general,

take into account the positions of all the particles which seems inherently nonlocal. Bell

asked whether one could remove the nonlocality. He also asked what went wrong with

the hidden variables arguments.

The result of these considerations was Bell’s famous inequalities. They pertain to

Bohm’s version of the EPR experiment spins are used rather than position and mo-

mentum. The essential idea is that particles can be setup in such a way that the

measurement on one particle tells us the value of a relevant observable for the other

particle; the correlation is verifiable. The particles are to be widely separated so that no

local influences can intervene. By measuring an incompatible observable on the second

particle, one has results for two incompatible observables. With only local influences

propagating, one would conclude that the values must already be predetermined. Bell’s

inequalities then showed that it is impossible for such values to be predetermined assum-

ing the quantum mechanical predictions. The conclusion is not that hidden variables

are impossible. Rather, quantum mechanics is, fundamentally, nonlocal. To be sure,
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the nonlocality seems benign enough to avoid signalling paradoxes, but it is still true

that the fundamental theory seems to be nonlocal. One of the advantages of Bohmian

mechanics is that it forces one to deal with nonlocality in an honest way.

Sadly, Bell’s work was not a clarion call to embrace Bohmian mechanics. Although

Bell seems to have taken Bohmian mechanics as the sensible version of quantum theory,

he was invariably misunderstood by the physics community. They would cite his work

as proof that hidden variables could not explain the results of quantum measurements.

His work actually shows that no local theory can explain it. But the point of particle

motion is neither to have locality nor to eliminate probabilities. Rather the point of

Bohmian mechanics is that it avoids the mysticism of quantum mechanics. For example,

instead of postulating collapse, one derives collapse of the wave function from the theory.

2.7 Objections to Bohmian mechanics

It seems that the objections to Bohmian mechanics come in four generic varieties. The

first is a misunderstanding of the facts of the situation. To put it straight, Bohmian

mechanics is a consistent theory whose predictions agree with those of quantum me-

chanics. There can be no disagreement. Thus, any evidence in support of orthodox

quantum theory is evidence for support of Bohmian mechanics.

This naturally leads to “Who cares?” There is not much to say about this. We

have already explained the clarity that Bohmian mechanics gives to the measurement

problem. That itself should be sufficient.

I would add that standard quantum mechanics appears as pure magic while Bohmian

mechanics is the mechanism behind the show. The relevance of this statement is in the

teaching of quantum mechanics. The standard approach mystifies students beyond the

common mystification associated with abstract mathematics. Fundamentally, many

thoughtful students are not comfortable with the measurement axioms. Unlike other

areas of physics in which explanations are offered, quantum mechanics lends no ex-

planations to collapse or the special role of measurement. Adopting a Bohmian point

of view leads to a clear picture and, at the very least, one can cite that the axioms
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mathematically follow from the evolution equations.

There are many objections to standard quantum theory that one can raise, but

the problem is that there is no actual standard quantum theory when measurements

are discussed. And it is exactly at the point of measurements, at the contact with

reality, that Bohmian mechanics is relevant. It explains, in an obvious manner, what

this mathematical theory has to do with reality. More fundamentally, one should start,

when developing a theory, with an idea of what the primitive variables are for the

formulation of this theory. Primitive variables should not be a deduction of a the-

ory, although experiments may suggest suitable variables to choose. Presumably the

primitive variables should not be results of measurements which are rather complicated

objects centered upon human existence. One does not want a human-centered theory;

rather, one wants a clear theory in which certain behavior of the variables would give

a reasonable explanation of why the world behaves as it does.

Bohmian mechanics postulates the existence of particles with definite positions

which evolve according to a prescribed dynamics. It happens that this dynamics in-

volves a wave function evolving according to Schrödinger’s equation. As we shall now

explain, demanding a particle ontology almost immediately leads to Bohmian mechan-

ics.

2.7.1 Where does Bohmian mechanics come from?

The third objection to Bohmian mechanics is that it is cooked up. We shall state five

different derivations of Bohmian mechanics.

1. The starting place for deriving Bohm’s equation is the same as for deriving

Schrödinger’s equation. We start with the idea that a wave is involved. In par-

ticular, we assume we have a generic plane wave, i.e.

ψ(q, t) := ei(k·q−ωt). (2.4)

The empirical data somehow suggested that the momentum of the particle was

given by the de Broglie relation

p = ~k. (2.5)
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The energy of the particle was related to the frequency via the Planck formula

E = ~ω. (2.6)

We now look for an equation of motion for the particle as well as for the wave

equation.

To obtain k from ψ, we take the spatial derivative and divide by i and ψ. Thus,

(2.5) and (2.4) suggests that

mv = p = ~k =
~

i

∇ψ
ψ
.

Considering, instead of (2.4), a general complex-valued wave function, we find

that we would end up with a complex velocity vector. The simplest choice is to

take the real part of the expression above which, since we divided by i, translates

into taking the imaginary part. We have thus derived Bohm’s equation:

vψ :=
~

m
Im
∇ψ
ψ
.

What about Schrödinger’s equation? Well, classically, the energy of a particle is

E =
p · p
2m

+ V.

We look for the simplest wave equation whose plane wave solutions (2.4) are

consistent with (2.5), (2.6), and (1). We find that (2.6) implies for plane waves,

that

E = − ~
iψ

∂ψ

∂t
.

As for the p term, we have two possibilities:

p · p =− ~2∇ψ
ψ
· ∇ψ
ψ

(2.7)

or

p · p =− ~2 ∆ψ
ψ
. (2.8)

Choosing (2.8) leads to

− ~
iψ

∂ψ

∂t
= − ~

2

2m
∆ψ
ψ

+ V,
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which becomes Schrödinger’s wave equation after multiplying through by ψ. As

for (2.7), this is not a linear equation. For a linear equation, knowing the solutions

for any initial plane wave actually specifies the evolution for any function. This

is not true for nonlinear equations.

We have arrived at Bohmian mechanics. We shall discuss in Chapter 3 how to

arrive at the Pauli equation.

2. Briefly, if we start with Schrödinger’s equation, then we can derive a continuity

equation for ρ = |ψ|2. By dividing the probability current by ρ, we obtain a ve-

locity field, the Bohm velocity field. Equivariance is then immediate, and with it

the empirical agreement with quantum mechanics. In terms of finding Bohmian

laws of motion, this has been a successful and easy method for determining ap-

propriate laws. But as a derivation, it has a feeling of fitting theory to given

data. Thus, it is best if we have other methods. But we do note that one of

the guiding principles in forming quantum theories is to establish that there is an

appropriate probability current associated with the equation. This suggests that

we should perhaps formulate the Bohmian law of motion and then find a wave

equation based on demanding equivariance.

3. Schrödinger’s equation also implies a Hamilton-Jacobi equation. This is Bohm’s

method of derivation. It describes particles moving under a force consisting of the

classical force and a new quantum force. But we have to supplement the force with

the constraint on the initial velocity field given by the wave function according to

Bohm’s equation. The strange feature about this is that the constraint is actually

the law of motion one wants.

4. In [25], the authors give a rather convincing derivation of Bohm’s equation based

on symmetry considerations. The quantity ∇ψ is a natural quantity for a rotation

invariant way of obtaining a vector. Dividing by ψ comes from noting that it is

only the ray in Hilbert space which is physically relevant. The imaginary part

arises from time reversal invariance. Under time reversal, the wave function is sent

to its complex conjugate and velocity fields change sign. To obtain the factor of
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~

m , we must consider Galilean boosts. Under a boost, we have that ψ 7→ e−i
m
~
w·qψ

where w is the velocity of the new frame with respect to the old frame. A velocity

v should tansform to v−w in the new frame and the Bohm velocity will become

vψold −w if and only if the factor in front is ~

m .

5. A new derivation is in [23]. It seems to apply to a wide variety of cases, such

as the non-relativistic case, quantum field theory, and the Dirac equation. In

some situations, it must be interpreted correctly. We shall only show here that it

agrees in the non-relativistic case. The idea is that a tangent vector is a first-order

differential operator acting on functions and obeying the Leibniz rule. Thus, v is

defined if we know what v(f) is for all f . In particular, if we have coordinates,

then the tangent vector v has coordinate components vj = v(xj). We also note

that if q(t) is a trajectory whose tangent vector is v at time 0, then defining

g := f ◦ q, we have ġ(0) = v(f).

From a quantum perspective, functions can be thought of as multiplication oper-

ators acting on the Hilbert space of wave functions. In general, an operator A’s

time evolution, in the Heisenberg picture, is given by3

Ȧt =
i

~

[H,At].

Thus, transform f into a multiplication operator: (f̂ψ)(q) := f(q)ψ(q). We shall

assume that f is smooth and is compactly supported, as local information is all

that we care about. Then the Bohmian velocity field v with a given ψ can be

defined as the differential operator whose action satisfies

(v(f))(q) = ḟ(q) = Re
(ψ, ˙̂

fψ)
(ψ,ψ)

(q) = Re
(ψ, i

~
[H, f̂ ]ψ)

(ψ,ψ)
(q).

3This follows by shifting from the Schrödinger picture, in which A does not evolve and the expected
value of the operator at time t is given by (ψt, Aψt), to the Heisenberg picture in which only the

operator evolves and the expected value at time t is (ψ0, Atψ0). Indeed, let Ut = e−
i
~
Ht be the

(unitary) Schrödinger evolution operator. Then to obtain the same answer in both cases, we need
At = U−1

t AUt. By differentiating with respect to time, we find that

Ȧt =
i

~
HAt +At(−

i

~
H) =

i

~
[H,At].
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We shall now investigate this for Schrödinger’s equation. First, note that any

potentials in H commute with f and thus they contribute nothing to the velocity

field. Let us therefore take H to be − ~
2

2m∆. The commutator is easy to compute;

we find

[∆, f̂ ]ψ = ∆fψ + 2∇ψ · ∇f.

Thus, we have that

v(f) = v · ∇f

where v is the Bohm velocity field.

2.7.2 Relativistic extensions of Bohmian mechanics

The fourth objection is that it is irreconcilable with quantum field theory and with

relativity. These claims are false as recent work has demonstrated.

Nonlocality is often assumed to be problematical for a hidden variable perspective.

There are two responses to this. As stated previously, it is a problem for standard

quantum theory as well, but due to the shiftiness of what is being described, the problem

can be hidden for a long time. The second point is that there is no inherent inconsistency

with nonlocal influences in a relativistic theory, as discussed at length in [42]. More to

the point, there are relativistic, nonlocal Bohmian models [46, 34].4 The configuration

space for N particles moving in the space-time manifold M might be taken to be MN .

Then the wave function in a relativistic setting would seem to be a function on MN .

That is to say, it is a multi-time wave function. When evaluating the Bohmian evolution,

one must evaluate the wave function by using the positions of the other particles. The

problem is that we no longer have simultaneity to tell us what the full configuration is.

One model involves a foliation of space-time. That is to say, simultaneity surfaces are

built into the structure. Although perhaps distasteful, if a compelling Lorentz-invariant

law for the foliation can be found, then this should be acceptable. With the foliation

method, the empirical predictions are transparent and they are equivalent to those of

4One might argue as to what Bohmian means; in this section, we take it to mean a theory in which
there is a clear ontology with prescribed dynamics and no reference to measurements in the formulation
of the theory.
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quantum theory. In particular, the foliation is unobservable. Another idea involves

no additional structure. It uses the light cones to accomplish what the simultaneity

surfaces do. To have a chance at agreeing with experiments, it is necessary to use the

forward light cones. Thus, one might say there are two different arrows of time involved.

But the probabilistic import of the model is still unclear. Existence of the dynamics is

also rather unclear.

Quantum field theory is perhaps the object most pointed towards when decrying

the Bohmian point of view. Bohm took the approach of giving ontological status

to the fields. A recent approach [24] is to retain particles as the ontology with the

wave function retaining its role as guiding the particles. Describing the evolution of

the wave function is the primary concern of quantum field theory and it is difficult.

Understanding the role of particles is quite easy. The wave function is a function on

the disjoint union of all of the configuration spaces for the various number of particles.

That is, there is no fixed number of particles. The Bohmian motion consists of two

parts. One is the usual part in which the particles evolve deterministically guided the

wave function. The other part is stochastic. In a random fashion, particles are created

or annihilated. The motion proposed is equivariant implying that this model gives the

same empirical predictions as standard quantum field theory. But it is a theory in which

no discussion about measurements is necessary in order to make this a theory about

reality. It is true that this is not deterministic, but that was never the issue driving

Bohmian mechanics. The real issue was the demand for a simple, well-defined theory

of reality.
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Chapter 3

Geometrically formulating Bohmian theories

In this chapter, we shall formulate a Bohmian dynamics defined on a general Rieman-

nian manifold Q with the wave function being a section of a cc-Hermitian vector bundle

E over Q. We begin with scalar wave functions over Q and then generalize to vector

bundles. This sets up the general non-relativistic Bohmian framework. The Pauli equa-

tion may be viewed as both a special case as well as a generalization of this setup. We

explain how to view the equation as expressing a generalized version of the Laplacian.

After making a few standard observations, we finish this chapter with a discussion of

how a desire for an ultralocal Bohmian theory leads to the Dirac equation. It is rooted

in a structure which we call the square-root of the tangent space. It is intimately related

to the role of Clifford algebra in the Dirac equation.

3.1 A quick review of tensor analysis

In this section, we shall give a review of the uses and abuses of tensor analysis. An

appreciation of these methods is essential for an understanding of this chapter. For

most of this section and the rest of the chapter, the statements can either be thought

of as in terms of the whole bundle or just at a point. Even though it is best to think of

all the structures as just at a point, we shall write our notations without denoting the

point. For example, we shall write TQ instead of TqQ even though we will actually be

discussing the tangent space at the point q.

We start with a metric g on the manifold Q. It is a (0, 2)-tensor meaning that it

is an element of (T ∗Q)⊗2. It acts on (TQ)⊗2; alternatively one could say that it is a

bilinear form acting on tangent vectors. In coordinates, g = gjkdx
j ⊗ dxk where the

summation convention on repeated indices is implied. An important use of g is to lower
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an index, i.e. g may be viewed as a linear map from TQ to T ∗Q. Indeed, given a

tangent vector v, g(v, ·) is a 1-form. If it is necessary, we will denote the role of g as a

loweing operator by writing g[. In other words, g[(v) := g(v, ·). Even more compactly,

one may write v[ indicating that v has been converted to a 1-form using g.

An assumption on a metric is that it is nondegenerate which means that given a

vector v, there is a w such that g(v, w) 6= 0. This assumption is equivalent to demanding

that g as a lowering operator has an inverse. We denote the raising operator as G] and

it is a map from T ∗Q to TQ. One can then define G as a bilinear form acting on T ∗Q

by defining G(ω, ν) := ω(G](ν)) where ω and ν are 1-forms. Such a bilinear form is the

same as a (2, 0)-tensor i.e. it is an elment of (TQ)⊗2. In coordinates, G = Gjk∂j ⊗ ∂k

where (Gjk) is the inverse matrix to (gjk).

Most of our use of G is to contract it with (0, 2)-tensors. On product elements,

G(ω ⊗ ν) := G(ω, ν); it is then extended by linearity to all of T ∗Q⊗2. Let β be a

(0, 2)-tensor. Then the notations that may be used are G(β) = G◦β = β(G) = Gjkβjk.

We introduce some more notation. The symmetric subspace of a i-fold tensor prod-

uct of a vector space W with itself is denoted by
⊙iW . The antisymmetric part of

such a tensor product is
∧iW . The direct sum over i of the antisymmetric parts is the

exterior algebra where the product is the wedge product which may be defined as the

antisymmetrization of the tensor product of the terms.

A metric is a symmetric tensor, i.e. g ∈
⊙2 T ∗Q. Its dual, G, is also symmetric.

This means that G, when acting on a (0, 2) tensor, will only notice the symmetric part

of the tensor. In particular, if β ∈
∧2 T ∗Q, then G(β) = 0.

The final element of a metric on a manifold is that it should be parallel. This

requires choosing a connection on the tangent bundle. A connection can be viewed in

various ways. In this chapter, we shall be using two viewpoints. The first is that a

connection provides a means for parallel transporting vectors along paths. To say it in

another way, it provides an isomorphism of the local structures at different points on

the manifold although the isomorphism may depend on the path. The second viewpoint

is that it provides a method for differentiating vectors. We shall use D to denote the

covariant differentiation operator. This discussion works equally for any vector bundle.
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As part of the definition of a connection, the connection must satisfy the Leibiniz rule

for tensor products, i.e. D(v ⊗ w) := Dv ⊗ w + v ⊗ Dw where v and w are sections

of two vector bundles.1 It should also commute with contraction, e.g. if ω is a section

of the dual bundle in which v is a section of, then D[ω(v)] = D[ω](v) + ω(D[v]). In

particular, once you have defined a connection on a vector bundle, then there is an

induced connection on its dual space and all of the various tensor bundles that one can

form from these spaces.

For a metric, the connection which is chosen is the Levi-Civita connection. It is

uniquely specified by demanding that the metric is parallel and that the torsion of the

connection vanishes. The fact that the metric vanishes leads to the commutation of

differentiation and contraction with either g or G. For example, if v and w are vector

fields, then D[g(v, w)] = g(D[v], w) +G(v,D[w]).

For more general vector bundles, one can also have an inner product on the fibers.

One almost always has a connection on the bundle and demands that the inner product

on the fibers is parallel. This does not define the connection uniquely. Therefore, we

shall call such a bundle a cc-Hermitian vector bundle where “cc” stands for connection-

carrying indicating that a connection has been chosen and the inner product will always

be assumed to parallel under that connection. We shall generally use (·, ·) to denote the

inner product. We will always use D for the covariant derivative regardless of which

bundles are being discussed.

We shall now get into the heart of what we need. Given a section ψ of a cc-Hermitian

vector bundle E over the Riemannian manifold Q, we have that Dψ is an element of

E ⊗ T ∗Q which is often called an E-valued 1-form. We might also call this a 1-form

valued section of E which, although literally incorrect, is often useful terminolgy. The

gradient of ψ is ∇ψ := G](Dψ). It is an element of E ⊗ TQ and we might call it

a tangent vector valued section of E. For Bohmian mechanics, the velocity field is a

multiple of Im(ψ,∇ψ) which is indeed a section of the tangent bundle.

The Laplacian of ψ is defined to be the metric trace of the second covariant derivative

1A section of E is a map ψ from Q into E such that ψ(q) ∈ Eq, i.e. it maps a point q of Q into
elements of the vector fiber over q.
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of ψ. In symbols, we have ∆ψ := G(D2ψ). Note that the second covariant derivative

requires the use of the connection on the cotangent bundle induced by the metric. This

is the divergence of the gradient. Indeed, given a tangent vector valued section, one

can take the contraction of the derivative with the tanget vector value. In symbolds,

D · φ := Djφ
j which one could also view as ∇ · φ := g(∇φ). Thus, the divergence of

the gradient is

∇ · (∇ψ) = g(G]D(G](Dψ))) = g(G](G](D2ψ))) = G(D2ψ) = ∆ψ.

It is a fact that this is equivalent to the Laplace-Beltrami operator acting on sections

of a vector bundle [28]. The Laplace-Beltrami operator is defined on E-valued forms by

using Hodge-∗ duality and the exterior derivative. In the case of a section, this agrees

with the Laplacian described above. For other forms, it does not. They differ by some

curvature terms.

As a final note, many of the very useful computational tools of Euclidean analysis

do carry over into Riemannian manifolds and bundles. An important difference is in the

coordinate expressions although one can choose coordinates so that at one particular

point, the expressions look Euclidean. In general, if {ei} is a local basis for E and {dxl}

is a local basis for T ∗Q, then the Laplacian of ψ := ψiei is

∆ψ = Gjk(
∂2ψi

∂xj∂xk
ei + ψiD2[ei](∂j ⊗ ∂k) +

∂ψi

∂xj
D∂k [ei] +

∂ψi

∂xk
D∂j [ei] +

∂ψi

∂xj
eiD∂k [dxj ].

3.2 Bohmian dynamics on manifolds

A Bohmian dynamics exists in more general situations than the one described in Chap-

ter 2. In this section, the wave functions will still be complex-valued functions over

the configuration space. In fact, we can let the configuration space, Q, be an arbitrary

Riemannian manifold. Given a metric g on a manifold, the Laplacian may be defined

to be the metric trace of the second derivative as explained above. The gradient ∇ψ

is the (complex) tangent vector metrically equivalent to the 1-form Dψ. Then vψ, the

Bohmian velocity field associated to a wave function ψ, is

vψ := ~ Im
(ψ,∇ψ)
(ψ,ψ)

(3.1)



30

where we have absorbed the mass into the metric. The time evolution of the state

(Qt, ψt) is given by

dQt
dt

=vψt(Qt) (3.2a)

i~
∂ψt
∂t

=− ~
2

2
∆ψt + V ψt =: Hψt. (3.2b)

Thus, given (Q, g, V ), we have formally specified a Bohmian theory.

The above is suitable for any Riemannian manifold. A primary example is when

the configuration space describes multiple particles moving in physical space. Let the

Riemannian manifold M , with metric g, be the physical space. Then the configuration

space for N distinguished particles moving in M is Q := MN . Let the masses of

the particles be mi. Then the relevant metric on MN , acting on the tangent space

T(q1,...qN )M
N =

⊕N
i=1 TqiM , is

gN (v1 ⊕ · · · ⊕ vN , w1 ⊕ · · · ⊕ wN ) :=
N∑
i=1

mig(vi, wi).

Using gN for the metric, the Bohmian velocity field is given by (3.1) and the system

evolves according to (3.2). In Chapter 5, we give a more interesting discussion of many

particle systems.

3.3 The Hamilton-Jacobi equation on manifolds

As there is no analogue of this for theories whose wave functions are sections of a

bundle, we pause here to establish the standard fact that the modified Hamilton-Jacobi

equation is a consequence of the Schrödinger evolution. Let ψ =: Rei
S
~ where R is

positive and S is real. Then, the Schrödinger equation becomes, after dividing by ei
S
~ ,

i~
∂R

∂t
−R∂S

∂t
= −~

2

2
(∆R+

2i
~

∇R · ∇S +
i

~

∆S − 1
~

2
∇S · ∇S) + V R.

Taking the real part of that equation and dividing by −R, we have

∂S

∂t
= −1

2
∇S · ∇S − V +

~
2∆R
2R

which is the Hamilton-Jacobi equation for the potential V − ~
2∆R
2R on the Riemannian

manifold Q with metric g.
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3.4 Bohmian dynamics involving bundles

More generally, we can consider a Bohmian dynamics for wave functions taking values

in some complex vector bundle E over the Riemannian configuration space Q. Our

bundles will always be cc-Hermitian vector bundles. The “wave functions” then be-

come smooth sections of the vector bundle; C∞(Q, E) will denote the smooth sections

while C∞0 (Q, E) will denote the smooth sections with compact support. The local inner

product acting on the vectors vq, wq will be denoted by (vq, wq). The global inner prod-

uct on the Hilbert space of wave functions is the local inner product integrated against

the Riemannian volume element associated with the metric g; we denote the Hilbert

space by L2(Q, E). The potential V is now a self-adjoint section of the matrix, or more

properly endomorphism, bundle acting on the vector bundle’s fibers.2 In the context of

a theory involving just spin, V is restricted to being a pointwise linear combination of

the spin matrices and the identity; this does exclude a variety of potentials in the case

of many particles and generally in the case of 1 particle where spin-1
2 happens to be an

exception.

The equations are the same. Indeed, vψ, the Bohmian velocity field associated to a

wave function ψ, is

vψ := ~ Im
(ψ,∇ψ)
(ψ,ψ)

. (3.3)

The time evolution of the state (Qt, ψt) is given by

dQt
dt

=vψt(Qt) (3.4a)

i~
∂ψt
∂t

=− ~
2

2
∆ψt + V ψt := Hψt. (3.4b)

The wave function ψ will always be assumed to be in L2 and smooth, i.e. ψt ∈

C∞(Q, E) ∩ L2(Q, E). We shall generally assume that the formal Hamiltonian, H, is

essentially self-adjoint on the domain of compactly-supported, smooth wave functions.3

2For us, the terms matrix and endomorphism will be synonymous; the use of the term matrix does
not imply that we are using a particular basis. We avoid the term linear operator as that may be
confused with an operator acting on the Hilbert space of wave functions.

3Appendix C gives an extremely brief discussion about situations in which the Hamiltonian is not
essentially self-adjoint on the domain C∞0 (Q, E). As a particular example, when Q is R3 with the
z-axis removed, the Laplacian is not essentially self-adjoint on C∞0 (Q,C) [2]. A choice of a self-adjoint
extension is required corresponding to boundary conditions on the z-axis.
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We shall often use−∆+V to indicate that we are discussing the formal Schrödinger-type

Hamiltonians. It has been shown that −∆ +V is essentially self-adjoint on the domain

C∞0 (Q, E) for cc-Hermitian vector bundles whose base space is a complete Riemannian

manifold with suitable restrictions on the potential V ; see [53, 40] for details.

3.5 The continuity equations for bundle-valued Bohmian dynamics

We shall now establish the continuity equation for the Bohmian dynamics descrubed

by (3.4). This is just the standard argument. The density ρ is actually |ψ|2ν where ν is

the Riemannian volume element. The probability current ρvψ may then be considered

as a (n− 1)-form and the divergence is the exterior derivative of the current. In terms

of establishing the continuity equation, one can also view ρ as a function and then ρvψ

would be a vector field. The divergence is then the contraction of the derivative of the

vector field. In any event, we want to show that

∂ρ

∂t
+∇ · (ρvψ) = 0.

As a starting point, we can compute from Schrödinger’s equation that

∂ρ

∂t
=(
∂ψ

∂t
, ψ) + (ψ,

∂ψ

∂t
)

=(
1
i~

(−~
2

2
∆ψ + V ψ), ψ) + (ψ,

1
i~

(−~
2

2
∆ψ + V ψ))

=
1
i~
{~

2

2
((∆ψ,ψ)− (ψ,∆ψ)) + (−(V ψ, ψ) + (ψ, V ψ))}.

The potential term automatically vanishes since V is a self-adjoint matrix-valued func-

tion. The Laplacian terms may be compactly written as −~Im(ψ,∆ψ) = −~Im{∇ ·

(ψ,∇ψ)− g((∇ψ,∇ψ)). Since the last term does not contribute to the imaginary part,

we are left with the divergence of the probability current.

3.6 The Pauli equation

Let Q be a Riemannian manifold, with metric g, and let E be a cc-Hermitian vector

bundle. Physics often requires an additional structure. This strucutre may be viewed

as an entanglement of the spatial structure with the bundle structure; it comes in the

form of a representation.
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3.6.1 A bit of representation theory

Recall that a Lie algebra representation is a linear map from a Lie algebra into the

set of matrices acting on a vector space satisfying that the image of a Lie bracket is

the commutator of the images. For a Riemannian manifold, the relevant Lie group is

SO(g), the matrices that preserve the inner product; its Lie algebra is so(g). We also

note that Spin(g) is the double cover of SO(g) and has the same Lie algebra since the

Lie algebra is the tangent space to the identiy.

We will assume that our bundle and manifold come equipped with a Lie algebra

representation of so(g) induced by a representation of either SO(g) or Spin(g). We

shall denote the Lie algebra representation as S : so(g) → E ⊗ E∗. A representation

of a Lie algebra is a linear map which preserves Lie brackets. We shall assume that

the Lie group representation is a unitary representation; this does imply that S takes

values in the anti-self-adjoint valued matrices.

We now explain the very standard statement that
∧2 T ∗Q is canonically isomorphic,

up to a choice of sign, to the Lie algebra so(g). Indeed, the Lie group SO(g) is the set

of matrices A ∈ T ∗Q⊗ TQ which preserve the metric g. That is to say, if A ∈ SO(g),

then for every v, w ∈ TQ, we have the defining property

g(Av,Aw) = g(v, w). (3.5)

This group of matrices is a manifold and the Lie algebra is the tangent space to the

identity operator. More to the point, if we take a path A(t) ∈ SO(g) such that A(0) =

Id, then ∂A
∂t defines an element of the Lie algebra; every such element of the Lie algebra

arises in this way. By computing the derivative of (3.5), we find g(Ȧv, w)+g(v, Ȧw) = 0

which, using the symmetry of g, leads to

g(Ȧv, w) = −g(Ȧw, v).

The isomorphism between the 2-forms and the Lie algebra is given by the map Ȧ 7→ ω

defined by ω(v, w) := g(Ȧv, w). By the above equation, ω ∈
∧2 T ∗Q. By using the non-

degeneracy of g, we can make a bijective correspondence to the set of antisymmetric

matrices. Thus, given a 2-form ω, one can map it to an antisymmetric matrix A and

then exponentiate tA to obtain a path α in the Lie group such that α̇(0) = A.
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We may therefore view an element of the Lie algebra so(g) as an element of
∧2 T ∗Q.

The dual of this space is
∧2 TQ. We conclude that a representation may be viewed as

a special element of
∧2 TQ⊗ E∗ ⊗ E.

3.6.2 A generalization of the Laplacian

We start with the already stated observation that

∆ψ := G ◦ (D2ψ).

It is critical to appreciate this statement. Accepting it almost immediately leads to

the Pauli equation as an obvious extension. Just to be clear, D2ψ ∈ (T ∗M)⊗2 ⊗ E is

the second covariant derivative, i.e. it is a (0, 2) E-valued tensor. The symmetric (2, 0)

tensor G ∈ TQ⊗2 is the dual of the metric g ∈ (T ∗M)⊗2. We may therefore plug the

tensor G into the tensor D2ψ to obtain a section of E. Note that in the definition of

the Laplacian, we actually should say that G means G⊗ Id.

There is an obvious way to modify this definition. We can contract the second

covariant derivative with any matrix-valued (2, 0) tensor. That is to say, let T ∈

TQ⊗2 ⊗ E ⊗ E∗. Then T ◦D2ψ makes sense and defines the T -Laplacian which shall

be denoted by ∆T .

What should T be? Since G is part of the given local information, we may assume

that the symmetric part of T is G ⊗ Id ∈
⊙2 TQ ⊗ E ⊗ E∗. This choice is simple,

does not lead to any new objects, and is certainly invariant under transformations

preserving the metric. This leaves us with the task of specifying the antisymmetric

part of T . The easiest possibility, as originally done, is to take the antisymmetric part

to be zero. Assume that we do not do this. Since the antisymmetric part is an element

of
∧2 TQ ⊗ E ⊗ E∗, we see that the representation S is the same kind of tensor as

the antisymmetric part of T . The same reasoning that leads to choosing G leads us to

choosing S.

To understand what happens with T , we need to understand the second covariant

derivative of a section ψ. The second derivative of ψ decomposes into a symmetric

part and an antisymmetric part. The symmetric part is what it is; this is the term
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that contributes to the usual Laplacian and is the only part that G notices. The

antisymmetric part is the curvature of the connection applied to ψ; this is what S will

contract with. It is a tensor in ψ meaning that it depends only on ψ through its value

at that point. It turns out that if a connection preserves a Hermitian inner product,

then its derivative is anti-self-adjoint in its action on the bundle. See Appendix B for

an explanation of this fact. We shall use F to denote the curvature and F is an element

of
∧2 T ∗Q⊗ E ⊗ E∗.

Let us look at what we have. Taking ∆ψ to mean the metric trace of the second

covariant derivative, we see that

∆Tψ = ∆ψ + S(F (ψ))

where S(F ) is a contraction which leaves a self-adjoint matrix. Thus, we can write

∆Tψ = ∆ψ + V ψ

for some self-adjoitn V depending on the representation and the curvature. We do end

up with a Pauli-type equation. We also see that the Bohmian motion is still equivariant

with respect to ∆T for this choice of T . We also mention that one can easily multiply

both G and S, independently, in the definition of T .

As an illuminating example, let Q = R
3 and E = R

3×C2. We have as a background

connection, the trivial connection denoted by D. We are considering the case of a spin-

1
2 particle. Let S be the representation and S its vector version using the duality

between (1, 0) tensors and antisymmetric (2, 0) tensors special to three dimensions. In

particular, Sx = ~

2σ is what comes from S(y ∧ z). The curvature is the magnetic field.

It is most naturally a 2-form, but it becomes a vector under duality. The usual Paulie

equation is

i~
∂ψ

∂t
= −~

2

2
(∇+ iA) · (∇+ iA)ψ + µS ·Bψ

for some constant µ and vector potential A. The way it would be written above is

the following. Let ω be the 1-form equivalent to A under the metric and β the 2-form

equivalent to B; the 2-form is equal to the exterior derivative of ω. Then the T -based

Laplacian equation is

i~
∂ψ

∂t
= −~

2

2
(G+ S)(D + iω)2ψ
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which is the same as the Pauli equation after converting the objects and expanding.

3.7 Other equivariant motions?

We shall now ask whether T leads to a different, yet equivariant, motion for the particle.

The answer is yes. Finding other equivariant and invariant motions is not new; see

[20, 13]. This section is a bit technical and can be skipped without loss of information.

Let T ∈ TQ ⊗ E∗ ⊗ TQ ⊗ E. Then, viewing Dψ ∈ T ∗Q ⊗ E, we can contract on

the first two tensor factors of T with Dψ to obtain T ◦Dψ ∈ TQ⊗E. We then use the

inner product to obtain a complex tangent vector. Taking the imaginary part leaves

us with a real tangent vector. Multiplying by ~ and dividing by ρ := (ψ,ψ) leads to a

velocity field, vT,ψ. When do ρ and vT,ψ lead to an equivariant motion? In symbols,

we are defining

vT,ψ := ~Im
(ψ, T ◦Dψ)

(ψ,ψ)

and trying to find out what conditions guarantee that the continuity equation

∂ρ

∂t
+∇ · (ρvT,ψ) = 0

is satisfied?

As a starting point, we can compute from Schrödinger’s equation that

∂ρ

∂t
=(
∂ψ

∂t
, ψ) + (ψ,

∂ψ

∂t
)

=(
1
i~

(−~
2

2
∆ψ + V ψ), ψ) + (ψ,

1
i~

(−~
2

2
∆ψ + V ψ))

=
1
i~

(−~
2

2
(−(∆ψ,ψ) + (ψ,∆ψ)) + (−(V ψ, ψ) + (V ψ, ψ)));

we include the spin terms into the potential V . The potential term automatically

vanishes since V is a self-adjoint matrix-valued function. The Laplacian terms may be

compactly written as −~Im(ψ,∆ψ). Explicitly, we need

∇ · (ρvT,ψ) = ~Im(ψ,G ◦D2ψ).

Computing the divergence term, we find

∇ · (ρvT,ψ) = ~Im(∇ · (ψ, T ◦Dψ))

= ~Im((Dkψ, T
jkDjψ) + (ψ, (DkT

jk)Djψ) + (ψ, T ◦D2ψ))
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where we use AjBj to indicate a contraction over the indices when there may be am-

biguity; the last term has essentially an unambiguous contraction. We can think of ψ,

Dψ and the symmetric part of D2ψ as independent of each other. In particular, we

may choose some to be zero and the others non-zero. We therefore find that we need

Im(Dkψ, T
jkDjψ) = 0 (3.6a)

Im(ψ, (DkT
jk)Djψ) = 0 (3.6b)

Im(ψ, T ◦D2ψ) = Im(ψ,G ◦D2ψ). (3.6c)

Whenever these equations are satisfied, we have an equivariant motion.

These equations rule out many possibilities, but we shall find that we do have more

possibilities than just the usual Bohmian velocity. The main equation is (3.6a). The

essential trick is that we have complete freedom over the covariant derivatives of ψ.

Indeed, as discussed in Chapter 6, we can create a ψ whose symmetric covariant deriva-

tives are specified at a single point. In particular, we can choose the first derivatives

anyway we like. Pick a basis of the tangent space at a point q; although this discussion

only holds for q, since q is arbitrary, this is sufficient and we shall suppress the depen-

dency on q. For a basis element x, we choose D[ψ](x) = φ and D[ψ](y) = 0 for all the

other basis elements. With this choice, (3.6a) becomes

Im(φ, T xxφ) = 0

which evidently implies that T xx is self-adjoint as this hold for all φ. We now choose

D[ψ](x) = φ, D[ψ](y) = τ and all of the other basis directional derivatives to vanish.

Then (3.6a) becomes

0 =Im{(φ, T xxφ) + (τ, T xyφ) + (φ, T yxτ) + (τ, T yyτ)}

=Im{(τ, T xyφ) + (φ, T yxτ)}.

If we now take τ = φ, we complete the argument that the symmetric part of T is

self-adjoint. If we take τ = iφ, then we end up with

0 = Im{−i(φ, T xyφ) + i(φ, T yxφ) = Re(φ, T xy − T yxφ)

which indicates that the antisymmetric part of T is anti-self-adjoint. We now move on

to (3.6c). The symmetric part of the second derivative is an object that we can specify
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arbitrarily at a point. Thus, repeating an argument similar to the above, we have that

the symmetric part of T is equal to G ⊗ Id. The antisymmetric part of the second

derivative is an object that we do not have control over. Indeed, it is the curvature

operator. Therefore, if T ’s antisymmetric part is anti-self-adjoint, then it couples with

the curvature operator in a way to ensure self-adjointness. That is to say, if TA is the

antisymmetric part of T and F is the curvature operator, then

(ψ, T ◦D2ψ) = (ψ,G ◦D2ψ) + (ψ, TA ◦ Fψ).

As TA ◦ F is self-adjoint, its imaginary part vanishes.

We conclude that the only choice for T is G ⊗ Id + S where TA is a linear map of

the Lie algebra of so(g) taking values in the Lie algebra of anti-self adjoint matrices.

It is therefore natural to take TA := S to be the representation map. Equation (3.6b)

will be satisfied if T is parallel which it is if it is composed of G and S.

3.7.1 The addition of a curl

For equivariance, we could always add on a divergence-free vector field to the proba-

bility current. This will not change the empirical equivalence with standard quantum

mechanics. One can then ask the question as to whether there is a divergence free

velocity field that arises from the structures at hand. Indeed there is.

As we have said, S is a anti-self-adjoint matrix-valued antisymmetric (2,0) tensor.

If we define

ν := ~Im(ψ, Sψ) = −~Im(Sψ, ψ),

then we have an antisymmetric (2,0) tensor. Such an object can always be used to

define a divergence free vector field. Indeed, take the derivative of ν and contract; one

of the two vector slots must be chosen which is really a choice of a sign. This leaves a

vector field. More explicitly, we note that

(D[ν])j·j =
~

i
(D[Im(ψ, Sj·ψ)])j = ~Im(ψ, S ◦Dψ)

which is essentially what we had in the last section. Thus, adding this to the probability

current will not change the equivariance.
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But we wish to demonstrate that it is equivariant just because ν ∈
∧2 TQ. Let v be

the vector field obtained by contracting the first derivative of ν with one of its tangent

vector’s components. To compute the divergence, take the derivative of the vector field

and contract again. We claim that zero is the answer.

There are at least two ways to understand this. The first is to view an element of∧2(TQ), which ν is, as an (n − 2)-form using the volume form. Then compute the

exterior derivative to obtain a (n − 1)-form and this is equivalent to a tangent vector

field. The divergence is computed by taking the exterior derivative of the (n− 1)-form

and comparing the resultant n-form to the volume form. Since d2 = 0, we have that

the divergence vanishes.

The other way is to use the covariant derivative. The only reason to consider this

method is that we are using covariant derivatives and sometimes this use conflicts with

a differential form approach. But in this case, we end up with the same result. It is

important to recall that covariant differentiation preserves symmetry types, i.e. D2[ν]

is an element of
∧2(TQ)⊗ T ∗Q⊗ T ∗Q. By computation, we have

(D2[fν])jkjk = (D2[f ])jkνjk + (D[f ])j(D[ν])jkk + (D[f ])k(D[ν])jkj + f(Dk[ν])jkjk.

The second derivative of a function for a symmetric connection is symmetric which

implies, in conjunction with the antisymmetry of ν, that the first term vanishes. The

mixed terms vanish since we clearly have

(D[f ])k(D[ν])jkj = −(D[f ])k(D[ν])kjj = −(D[f ])j(D[ν])jkk .

Thus, multiplication by a function commutes with the divergence operator on antisym-

metric 2-tensors.

Let e and f be two vector fields forming part of a local basis at a point q. Then

(D2[e⊗ f − f ⊗ e])jkjk =D2[e]jjf −D
2[f ]jje +D[e]jjD[f ]kk −D[f ]jjD[e]kk

+D[e]jkD[f ]kj −D[f ]jkD[e]kj +D2[f ]kek −D2[e]kfk.

Clearly, the middle terms, involving the first derivatives, vanish since multiplication

is commutative. The other terms vanish because essentially we are left with Ricci
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curvature terms but in such a way that they cancel. Specifically,

(D2[e]jjf −D
2[e]kfk)− (D2[f ]jje −D

k[f ]kek) = Ric(e, f)−Ric(f, e).

As Ricci is a symmetric tensor, we have that the right hand side vanishes. Thus, the

divergence vanishes.

Therefore, one can add this spin-based velocity field to the usual Bohmian velocity

and still maintain equivariance. There would seem to be no way to distinguish between

these theories. As described in [13], the non-relativistic limit of the Bohm motion for

the Dirac equation seems to include this term. We conclude with remarking that if we

chose G⊗ Id +S for computing the velocity field, then we are using the same tensor to

compute the Laplacian as well as the velocity field. In other words, instead of choosing

G and S, we can view the whole specification of the theory as choosing the connection

(curvature), the object T (G and S), and the inner product.

3.8 The Dirac equation

In this section, we will argue that the structure of the Dirac equation is based upon

what may be called a square-root of the tangent bundle. It is this structure which is

suggested by the Bohmian viewpoint. In order to minimize additional structures on

space-time, we actually require our square-root of the tangent bundle to be a square-

root of the metric. We shall see that this puts a severe constraint on the choices and

leads to the Dirac equation being a square-root of the Klein-Gordon equation. We shall

assume we have a Lorentz metric on space-time and shall denote it by g and its dual by

G. As throughout this chapter, almost all statements are about the local structure and

one should have in mind the tangent space at a point and the fiber at a point rather

than the bundle although we shall omit the reference to the point.

3.8.1 Brief background material

Let W be a complex vector space. Its dual space, W ∗, is the space of complex-linear

functionals acting on W . The conjugate dual of W is the space of conjugate-linear

functionals acting on W ; it is denoted by W ∗and it is also the conjugate space of W ∗.
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The dual of W ∗ is canonically isomorphic to W under the mapping ψ 7→ ψ(ω) := ω(ψ)

where ψ ∈ W and ω ∈ W ∗. The dual of W ∗ is the conjugate space W of W . It is

the same as the conjugate dual of W ∗. It is canonically isomorphic to W under the

mapping ψ 7→ ψ(ω) := ω(ψ) and under the multiplication that takes c� ψ 7→ cψ. This

multiplication allows the appropriate conjugate-linearity to be expressed in the tensor

products. Heuristically, the conjugate space corresponds to the other choice of what i

could mean.

3.8.2 Square-roots of tangent spaces and metrics

From a Bohmian perspective, we want to have a theory of particles moving on space-

time. We restrict our attention to one particle. The idea is to try to define a covariant

vector field on space-time in terms of ψ. In the non-relativistic theory, one uses the first

derivative of ψ to do this. But what if the mapping between wave functions and velocity

fields were ultralocal, i.e. did not depend on derivatives, and yet it is still covariant?

Such maps do exist; we call such a map a square-root of the tangent space. As a

starting point, the map should be a sesquilinear-quadratic form taking values in the

tangent space; it should be conjugate linear in the first slot and linear in the second.

Abstractly, ν ∈W ∗⊗W ∗⊗CTQ which we few as a linear mapping ν : W ⊗W → CTQ.

Given a ψ ∈ W , we immediately have that ν(ψ,ψ) ∈ CTQ. We want a real velocity

field and therefore demand that ν(ψ,ψ) is a real tangent vector. Then the Bohmian

trajectories are the integral curves of the velocity field. Note that the parametrization

is irrelevant; all we need are the 1-dimensional submanifolds whose tangent spaces

correspond to the span of ν(ψ,ψ).4 From this we can deduce that both ν and ψ should

be thought of as projective objects. We also demand that ν be non-degenerate in the

sense that ν(ψ,ψ) = 0 if and only if ψ = 0. In summary, given ν acting on the bundle

and a section ψ, we have a velocity field for the law of motion for the particle.

Before we call ν a square-root of the tangent space, we also demand that it be

covariant. As part of this, we shall need a representation R of the Lorentz group acting

4As we are working in space-time rather than just space, we know that the position in the manifold
is all that should be relevant.
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on the bundle. To be a square root of the tangent space, ν must satisfy, for every

Lorentz transformation Λ acting on the tangent space and every ψ, φ ∈W .

Λ(ν(ψ, φ)) = ν(R(Λ)ψ,R(Λ)φ).

Given a covariant ν, we then have a covariant law of motion for the particle.

To form a law that the wave functions must satisfy, we shall need one more structure,

which we call µ, an appropriately linear mapping W ∗ →W . Thinking of ν as a mapping

from W → W
∗ ⊗ TQ, we see that µ ◦ ν leads to a mapping γ : W → W ⊗ CTQ.

Assuming that µ is invertible, which we do, we can define a, not necessarily positive

definite, sesquilinear product 〈ψ,ψ〉 := {µ−1(ψ)}(ψ). Thus, we have that ν(ψ,ψ) =

〈ψ, γψ〉. As this should be real for all ψ we have that γ should be appropriately self-

adjoint with respect to 〈·, ·〉. We also demand that µ be covariant or, equivalently, that

〈R(Λ)ψ,R(Λ)φ〉 = 〈ψ, φ〉.

What else can we generate with these structures? With 〈·, ·〉 and γ, we can con-

struct more tensor objects. For example, T := 〈ψ, γ2ψ〉 is a (2, 0) tensor. If we wish

to minimize new structures on space-time, then it would seem reasonable to demand

that the symmetric part of T is actually G〈ψ,ψ〉 which immediately means that the

symmetric part of γ2 is G⊗ Id. Making this one choice leads to very few possibilities,

after taking into account equivalences, of what the pair (ν, µ) represent.5 Indeed, γ is

a representation map for a Clifford algebra as we shall now explain.

The refrence for this material is [36]. A Clifford algebra for the vector space V ,

endowed with the metric β, is a an associative algebra with unit 1 equipped with

a linear mapping α : V → Cliff(V, β) such that α(V ) generates the algebra and

the anticommutator of the images is a multiple of the identity, i.e. {α(x), α(y)} =

α(x)α(y) + α(y)α(x) = β(x, y)1 for all x, y ∈ V .6 It is a fact that a Clifford algebra is

unique up to isomorphism. It is constructed from the tensor algebra of V by essentially

viewing x⊗ y+ y⊗x as β(x, y)1, i.e. mod out by the ideal generated by that equation.

If we allow β to be identically zero, then the Clifford algebra generated is the exterior

5The author does not know whether covariance of ν and µ are sufficient to deduce this.

6One also requires a universality property which we shall not state.
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algebra. For us, the vector space W is CT ∗Q and the inner product β is G.

A space of spinors for (V, β) is a vector space W equipped with a linear map γ :

V →W ⊗W ∗ such that the only invariant subspaces of W under γ(V ) is W and 0 and

that {γ(x), γ(y)} = β(x, y)Id. The map γ then extends to an irreducible representation

of the Clifford algebra and all irreducible representations arise in this way. For us, γ

is the same γ we were discussing before once we convert the spinor γ to a map of the

form W → V ∗ ⊗W . It is a fact that for even dimensions, there is exactly one space

of spinors while for odd dimensions, there is two inequivalent spaces of spinors. We

therefore have a complete specification of the additional structures in four dimensions

if the Clifford algebra representation is irreducible. Furthermore, γ2 = G ⊗ Id + S,

where S is a particular representation, up to equivalence, of the Lorentz Lie algebra,

so(g). For even dimensions, the Lie algebra representation decomposes into the two,

inequivalent, half-spin representations of so(g). For odd dimensions, the Lie algebra

representation is irreducible. Notice that the covariance plays no role in determining

the uniqueness of these structures; covariance even seems to be implied from demanding

that the symmetric part of γ2 is the metric.

The pair (ν, µ), or equivalently (γ, 〈·, ·〉), is what we call a square-root of the metric

since, when we square γ, the symmetric part is the metric.

The usual Gamma matrices also give rise to an irreducible representation of the

Clifford algebra for G. By the uniqueness cited above, we find that a square-root of the

Lorentz metric on four-dimensional space corresponds to an equivalent representation

as the usual Gamma matrices.

3.8.3 Formulating the Dirac equation

We shall continue to use D for the covariant derivative and it shall be used for differ-

entiating any object such as vector fields or sections of the bundle E.

We start by noting that ν and µ should be parallel. Equivalently, we demand that,
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for any section ψ, we have

Dν(ψ,ψ) = ν(Dψ,ψ) + ν(ψ,Dψ) (3.7)

D〈ψ,ψ〉 = 〈Dψ,ψ〉+ 〈ψ,Dψ〉. (3.8)

Using the irreducibility of the Clifford algebra representation, it can be shown that the

set of possible connections is characterized by the class of 1-forms rather than general

matrix-valued 1-forms.

To obtain the Dirac equation, one could try to formulate the simplest equation with

the structures at hand. What do we have? We have a mapping γ taking wave functions

to elements of CTQ⊗W . The covariant derivative takes wave functions to elements of

CT ∗Q ⊗W . Both are covariant operations. If we contract with these two operators,

then we have an invariant operator taking sections of E to sections of E. This is the

Dirac operator which is defined to be /∂ψ := γjDjψ. Seeking an invariant equation

for the wave function using the Dirac operator, we see that the Dirac equation is an

obvious candidate:
~

i
/∂ψ = aψ. (3.9)

There is another way to argue for this equation. As before, we want to minimize

the structures placed on space-time. Given a vector field, one can take its derivative.

Demanding that this vanishes leads to a rather uninteresting vector field. If we demand,

on the other hand, that only the divergence vanishes, then a natural candidate is the

Dirac equation. This is the space-time version of equivariance. The velocity field being

divergence-free is the equation

0 = Dj〈ψ, γjψ〉 = 〈Djψ, γ
jψ〉+ 〈ψ, /∂ψ〉 = 〈ψ, /∂ψ〉+ 〈ψ, /∂ψ〉

where we have used the previously mentioned fact that 〈τ , γφ〉 = 〈γτ , φ〉 for all τ, φ ∈W .

Thus, we need the real part of 〈ψ, /∂ψ〉 to vanish. This certainly follows if ibψ = /∂ψ for

some real constant b which is the Dirac equation.

A final fact is that the Dirac operator is the square root of a Pauli-type Laplacian.

Indeed,

a2ψ = (
~

i
/∂)(
~

i
/∂)ψ = −~2(γ2)jkD2

jkψ = −~2(∆ψ + S(F )ψ)
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where F is the curvature of the connection. Thus, a solution to the Dirac equation also

satisfies the Klein-Gordon-Pauli equation.
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Chapter 4

Theory formation and the influence of the topology of

configuration space

4.1 Introduction

In this chapter, we analyze the influence of the topology of the configuration space in

formulating Bohmian theories. We formulate the Abelian Quantization Principle which

states that, in addition to the usual data such as the potential, one needs to choose a

character of the fundamental group of the configuration space when forming a Bohmian

theory. To conclude the principle, we consider three different approaches based on: the

covering space; connections; and self-adjoint extensions. We demonstrate that each

approach generates equivalent theories. This will set us up for the next chapter. In

particular, we will conclude that, in the theory of identical particles moving in 3-

space, one has the choice between bosons and fermions. This is the usual Bose-Fermi

alternative.

The current goal is to explain the relevance of a space being multiply connected.

The prime example to have in mind is the Aharonov-Bohm effect. Briefly, the setup is a

particle moving along a circle embedded in 3-space; there is also a magnetic field whose

support is disjoint from the circle but whose integral over the disk does not vanish.

We would like to model this situation in terms of a Bohmian system involving just the

circle with no need to embed it into an ambient space.

We start by considering what role the covering space might have. The idea is to

consider wave functions on the universal covering space such that they still define a

Bohmian motion on the base space. For the circle, the covering space is a line; the

useful wave functions are those that are 2π-periodic up to a phase. In general, we find

a periodicity condition characterized by a character of the fundamental group. Another
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approach is to consider different connections. This is very familiar in the context of the

Aharonov-Bohm effect. The important point is that the characters of the fundamental

group are in bijective correspondence with the flat connections; the correspondence is

that of the holonomy operator. For the circle, this is the integral of the vector potential.

The final approach is to consider different self-adjoint extensions of the Hamiltonian.

On the circle, if we remove a point, then we may view the space as an interval. As is

well-known, there are a variety of possible self-adjoint Laplacians on the interval; they

are characterized by different boundary conditions. The extensions that are permissible

are those for which, given any other point, there is a corresponding Hamiltonian which

provides the same Bohmian evolution of the configuration.

The notion of multiply connected spaces giving rise to different quantum theories is

not new. A sampling of the literature is the following. The use of a covering space was

done at least as early as 1950 as in [14]; it was more fully done in [21]. The use of vector

potentials was done in [3]. Path integrals on multiply connected spaces began largely

with the work of [50] and [37]; see [51] for details. Most of these works are dedicated

to scalar-valued wave functions.

This chapter is organized as follows. In Section 4.2, we discuss the circle and its

relation to the Aharonov-Bohm effect. In that section, we give the principle for Bohmian

theories on manifolds for which the wave functions are complex-valued functions over the

configuration space. We give the general formulation and argument for the principle in

Section 4.3; the generalization refers to taking wave functions to be sections of a given

complex vector bundle over the configuration space. The entire discussion, centered

upon deriving how characters arise, is based upon appealing to the covering space of

the configuration space. Section 4.4 and Section 4.5 discuss approaches that do not use

the covering space. We contrast the various equivalent approaches in Section 4.6 and

discuss in Section 4.7 how the principle is generating locally equivalent theories. We

conclude with a discussion of quantization. In particular, quantization of systems on

the configuration space whose potential can only be formulated on the covering space

is described in Section 4.8.4. Appendix A reviews the necessary notion of a set-indexed

tensor product. Appendix C deals with a technical point involving the self-adjointness
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of the formal Hamiltonian.

4.2 The circle and the Aharonov-Bohm effect

In this section, all wave functions will be complex-valued functions on the configuration

space.

Consider the system of a single particle constrained to travel along a circle. Thinking

of the circle as sitting in R3, we assume that going through the center of the circle is

a magnetic field. We demand that the field vanishes in a neighborhood around the

circle, but that its integral over a disk, with the circle as the boundary, does not

vanish. Our goal is a Bohmian theory that accurately describes this system in which

the configuration space is explicitly the circle.

This is a simplified version of the usual Aharonov-Bohm effect. The standard answer

is that the vector potential which generates the magnetic field should be included in

the covariant derivative. This does work as explained in Section 4.4. But we want to

describe this without getting into bundles. Instead, we shall focus on the topology of

the circle and see that the possibilities naturally arising from being multiply-connected

already provides the setting for such a model.

We are looking for other Bohm-type theories governing an evolution of a particle

on the circle. One important constraint is that the Bohmian velocity field needs to be

well-defined on the circle. The inspiration in this approach comes from noting that if

we write ψ in the polar form ReiS/~, then vψ = ∇S. Thus, the Bohmian velocity field

is locally a gradient. From classical experiences, this immediately brings to mind the

universal covering space which, for the circle, is just R. We can therefore ask which wave

functions on R could provide an evolution on the circle. The tentative answer are those

wave functions for which S is periodic up to a constant, i.e. S(θ + 2kπ) = S(θ) + kβ.

This translates into a multiplicative periodicity condition on ψ:

ψ(θ + 2kπ) = γkψ(θ). (4.1)

As a side note, we could say that the periodicity condition is represented by a homo-

morphism between the additive group of integers into the multiplicative group of the
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unit circle in the complex plane. More abstractly, we could say that we have a unitary,

1-dimensional representation of the covering group, and therefore of the fundamental

group, for the circle.

Given this periodicity condition, it is clear to see that the associated Bohmian

velocity field on R is 2π-periodic. Hence, one can project the velocity field down to the

circle in order to define a Bohm-type evolution of the particle. As for this condition

being preserved under the Schrödinger evolution on the covering space, linearity of

Schrödinger’s equation suggests it; locally, the wave function differs only by a constant.

We shall say more about this in the next section.

We may therefore define a γ-based theory in the following way. The position of the

particle at time t, Qt, is a point on the circle. The wave function is a smooth function

on R satisfying (4.1). The evolution of the wave function is governed by Schrödinger’s

equation on R. The generated Bohmian velocity field projects, in a single-valued way,

to the circle. The position then evolves according to that velocity field.

As for the relation to the Aharonov-Bohm setup, we make the following claim, which

will be established in more generality in Section 4.4.3. Let β :=
∫
D2 Bω. This integral

requires a choice of orientation and the choice induces an orientation on the circle. If

increasing θ on R agrees with this orientation, then γ := e−iβ will give the appropriate

theory.

The above story holds much more generally. We first state the following principle

for scalar-valued wave functions. We then explain the terminology and notation in a

following subsection. An even more general statement is given in the next section.

Principle 1 (Abelian Quantization Principle, covering formulation, scalar).

To specify a Bohmian theory involving complex-valued wave functions, one must choose

a Riemannian configuration space Q, a potential V , and a character γ of the funda-

mental group π1(Q) of Q. The Bohmian theory corresponding to the character γ is

defined by (3.2a), where ψt is a smooth wave function on Q̂ satisfying the character’s

associated periodicity condition and locally satisfying (3.2b), i.e. ψt evolves according

to the Schrödinger dynamics generated by the lift of H from Q to Q̂.
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4.2.1 Notations and relevant facts

The notations are summarized by the table:

Configuration space Q S1

Universal covering space Q̂ R

Points in Q, Q̂ q, q̂ eiθ, θ

Projection map ρ : Q̂ → Q ei· : R → S1

Covering fiber over q, eiθ ρ−1(q) {θ + 2kπ}k∈Z

Fundamental group of Q π1(Q) Z

Covering transformation σ σk : θ → θ + 2πk

Covering group Cov(Q̂,Q) σk

Character of fundamental group γσ γk := γk1

Bundle, lifted bundle E, Ê S1 × C, R × C

Throughout this chapter, Q will be a Riemannian manifold with metric g. Its

universal covering space will be Q̂. We shall always take Q̂ to be endowed with the

lifted metric ĝ; this assures that it is canonically locally isometric to Q. More to the

point, the differential operators are locally identical.

The universal covering space Q̂ of Q is, by construction, a simply connected space.

The covering fiber for q ∈ Q is the set of points in Q̂ that project to q under the

projection, or covering, map, ρ : Q̂ → Q, associated with the covering space. A

function f : Q̂ → C is projectable iff f(q̂) = f(r̂) whenever ρ(q̂) = ρ(r̂). The projection

f̃ : Q → C is defined by f̃(q) = f(ρ−1(q)). Projectability of a vector field can be

translated into demanding that ((Dρ)vψ)(q̂) = ((Dρ)vψ)(r̂) whenever ρ(q̂) = ρ(r̂);

Dρ : T Q̂ → TQ is the differential of the map ρ. The lift of a function or a vector field

is always well-defined and it is the inverse of projection.

If E is a bundle over Q, then the lift of E, denoted Ê, is a bundle over Q̂; the fiber

at q̂ is defined to be the fiber of E at q, i.e. Êq̂ := Eq where q := ρ(q̂). When we do this,

we can then lift sections of the vector bundle as well as matrix-valued functions acting

on the bundle. It is important to realize that with this construction, it makes sense to

ask if v ∈ Eq̂ is equal to w ∈ Er̂ whenever q̂ and r̂ are elements of the same covering
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fiber. As a particular example, the lift of the tangent bundle of Q to Q̂ is canonically

isomorphic to the tangent bundle of Q̂.

A covering transformation is an isometry which maps the covering space to itself

and which preserves the covering fibers. The group of such transformations is the cov-

ering group and is denoted by Cov(Q̂,Q). The fundamental group at a point q, denoted

by π1(Q, q), is the set of equivalence classes of closed loops, through q, where the equiv-

alence relation is that of homotopy, or smoothly deforming one curve into the other.

The product in the group is concatenation; in particular, given στ , we first follow τ and

then follow σ. This is in contrast to the common definition of the product in the oppo-

site order. We do it this way as it seems more natural in terms of parallel transport,

which is of fundamental concern to us. The fundamental groups at different points are

isomorphic to each other as well as to the covering group, but the isomorphisms are

not canonical. By the fundamental group, written π1(Q), we shall mean the abstract

group which the covering group and all of the fundamental groups are isomorphic to. In

particular, a representation of the covering group is a representation of the fundamental

group. A character of the fundamental group is any unitary, 1-dimensional represen-

tation of the fundamental group, i.e., it is a homomorphism between the fundamental

group and the multiplicative group of the complex numbers of modulus one.

4.3 Bohmian mechanics and topology:

the Abelian Quantization Principle

Since it is the same argument, we shall argue for the Abelian Quantization Principle in

the context of a Bohmian theory in which the wave functions are sections of a vector

bundle. We start with a Riemannian configuration space Q and a vector bundle E

endowed with a connection and a parallel inner product. We are also given a self-adjoint

matrix-valued potential V acting on E. We claim that, in addition to this information,

we also need to choose a character of the fundamental group to complete the theory

formation. That this is an a priori necessity is debatable since the theory corresponding

to the trivial character requires no need to appreciate the other possibilities. But the
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physics certainly seems to require an appreciation of these options.

As in the case of the circle, the idea is to appeal to the universal covering space Q̂

in order to trivialize the topology. We lift all of the objects of our theory to Q̂. This

includes lifting E to Ê by defining Eq̂ := Eq. By lifting the local objects, we can write

down a Schrödinger’s equation for sections of Ê; we refer to the Hamiltonian on Q̂

as the lifted Hamiltonian. As before, we are only interested in wave functions which

generate a Bohmian evolution on Q. In particular, the velocity field defined in (3.3)

needs to be projectable.

Although we no longer have an S, as we are dealing with vector bundles, it is quite

clear that projectability is guaranteed if we have a scalar periodicity condition as in the

case of the circle. More precisely, if ψ is a section of Ê satisfying

ψ(σq̂) = γσψ(q̂) (4.2)

for every q̂ ∈ Q̂ and σ ∈ Cov(Q̂,Q), and where γσ is a constant of modulus one, then

it is clear that

vψ(q̂) = vψ(σq̂).

In order to say that we have a Bohmian dynamics on Q, we must demonstrate

that if the initial wave function satisfies (4.2), then it remains projectable. In fact, we

shall demonstrate that it continues to satisfy the same periodicity condition. It follows

from the linearity of Schrödinger’s equation and the fact that the lifted Hamiltonian is

locally the same when compared at different points in the same covering fiber. The idea

is that the wave function at different “levels” is the same up to an irrelevant constant.

Its evolution should therefore be the same on the different levels and the periodicity

condition will thus be preserved.

A more precise argument is the following. If ψt is any solution to Schrödinger’s

equation on Ê, then, for any covering transformation σ, we have that ψσt := ψt ◦ σ is

another solution to Schrödinger’s equation.1 On the other hand, if we multiply ψt by a

1Since the potential is identical at each point of the covering fiber, we only have to worry about the
Laplacian. But since σ is an isometry we have ∆ψσt = (∆ψt) ◦ σ.
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constant scalar, we still have a solution. Using the periodicity condition and uniqueness

of initial conditions, we have that the periodicity condition is preserved.2

Given the periodicity condition (4.2), it is a fact that the map γ : Cov(Q̂,Q)→ C,

must be a representation of the covering group, as the following argument demonstrates.

Let σ1, σ2 ∈ Cov(Q̂,Q). Then we have the following equalities

γσ1σ2ψ(q̂) = ψ(σ1σ2q̂) = γσ1ψ(σ2q̂) = γσ1γσ2ψ(q̂).

We therefore conclude the fundamental relation

γσ1σ2 = γσ1γσ2 . (4.3)

We thus have that each periodicity condition corresponds to a character of the covering

group. The periodicity condition also forms a character of the fundamental group since

the fundamental group and covering group are isomorphic.

We have the following principle, which shall be denoted by AQPQ̂:

Principle 2 (Abelian Quantization Principle, Q̂). To specify a Bohmian theory,

one needs to pick a Riemannian manifold Q, a cc-Hermitian vector bundle E over Q,

a potential V , and a character γ of the fundamental group π1(Q). The Bohmian theory

(Q, E, V, γ)Q̂ is defined by (3.4) where vψt is the projection to Q of the Bohmian velocity

field defined on Q̂ and the wave function ψt is a section of the lifted bundle Ê satisfying

(4.2) and locally satisfying (3.4b).

4.3.1 Remarks

1. The trivial periodicity condition, σ 7→ 1 for all σ, corresponds to lifted wave

functions. Indeed, if we lift a wave function from Q to Q̂, then, for every q̂ ∈ Q̂

and σ ∈ Cov(Q̂,Q), the wave function satisfies the periodicity condition

ψ(σq̂) = ψ(q̂).

2Assume that ψ0 satisfies the periodicity condition. Let ψt be the solution of Schrödinger’s equation
with that initial condition. Define φσt := γσψt. By linearity, this is a solution to Schrödinger’s equation.
As stated above, ψσt is also a solution. We claim that ψσ0 = φσ0 . This is clear since ψσ0 (q̂) := ψ0(σq̂) =
γσψ0(q̂) =: φσ0 (q̂). Thus, by uniqueness of initial conditions, ψσt = φσt which implies that the periodicity
condition is preserved.



54

2. Having a projectable Bohmian velocity field places no constraint on the ampli-

tude. One might then wonder whether the amplitude is allowed to vary based

on q̂. Generically, such a condition will not be preserved under the Schrödinger

evolution. In other words, if rσ(q̂) is the proposed amplitude, then in order to

argue that it is preserved, we should have ∆rσψ = rσ∆ψ. That is to say, we need

(∆rσ)ψ +∇rσ · ∇ψ = 0. If rσ is independent of ψ, we see that ∇rσ must vanish

and hence rσ is a constant.

3. What if rσ is a constant? In standard quantum mechanics, the condition on wave

functions on the covering space is that their densities should project down unam-

biguously [45]. As this is not our motivation, one might wonder why γσ should

be of modulus one. If the fundamental group is finite, or even just idempotent,

then the constant must be a root of unity as a result of γ being a representation.

If the group is not idempotent, then the representation properties do not demand

that γσ be of modulus one. But if γσ has a modulus not equal to one, then

|ψ(σmq̂)| = rmσ ψ(q̂), for any integer m; our amplitude is growing exponentially in

space as we proceed from level to level. With such a growth, there is reason to

believe that the evolution of the system will be ill-defined.

4. For vector bundles, multiplying by a scalar is not the only possibility. We could

imagine replacing γ with a matrix, Γ. Again, the problem is preservation of the

condition under the Schrödinger evolution. In particular, it is necessary that

[Γ, V ] = 0. This could happen, e.g. V is a scalar function times the identity,

but it should not be expected. In section 5.4.1, we discuss this possibility in the

context of spin and demonstrate that it is not possible.

5. Another question is whether the periodicity condition characterizes all projectable

wave functions. This is clearly false since any real wave function has a zero

Bohmian velocity field and hence it projects unambiguously. If we make the more

important restriction that the wave function should be projectable for all time,

it still fails. Indeed, it is possible to have on the covering space a wave function

which is essentially a real eigenstate of the potential. It is therefore invariant
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and its velocity field vanishes implying projectability. This is not a problem as

our goal is to formulate a theory. We are not interested in having just one wave

function, but we are rather demanding a robust class of wave functions that our

theory will have as initial conditions.3

6. Different characters may give rise to equivalent theories. In the examples we

discuss, the theories are not equivalent, and this is generically the case. If our

bundles are 1-dimensional, then they are distinct. We shall say more about this

in Section 5.5 in a context for which this can be more readily understood.

4.4 Different connections

We have described a class of Bohmian theories that arise by considering those wave

functions, defined on the covering space of the configuration space, which provide an

unambiguous evolution of the configuration. We motivated that line of pursuit with

the circle in the situation of the Aharonov-Bohm effect. In this section, we shall pursue

theories that arise by considering different connections, i.e. different possibilities for

what the derivative is. This approach has the advantage that it does not depend

on Bohmian considerations. Instead of changing the base space, we change the bundle

structures of the value space of the wave function. We automatically have a well-defined

Bohmian velocity.

3It can be argued that a wave function which is projectable for all time, but does not satisfy the
periodicity condition, must have the property that the nodal set is of codimension 1. Since wave
functions generically have a nodal set of codimension 2, as both the real and imaginary parts must
vanish, we can expect that the condition is only preserved under very special conditions such as the
wave function being an eigenstate and, therefore, not evolving. This question was pursued in the
context of identical particles in [7]. As a particular example in that setup, and one which should
perhaps be read after the Chapter 5, consider the hydrogen atom with two electrons and no interaction
between the electrons. Tensor the ground state with a real-valued excited state. The state is then
essentially invariant under the evolution and has no particular symmetry. Since it is essentially real,
the Bohmian velocities are zero and, hence, consistent. We would expect, however, that under a small
perturbation of the potential (or including interactions) the states would evolve in such a way as to
lose their consistency condition.
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4.4.1 The circle

We start with the circle. The usual wave functions over the circle are sections of the

trivial bundle S1 × C. For trivial bundles, there is a natural choice for a derivative;

namely, form the difference quotient. Since it is a trivial bundle, there is no issue in

comparing values in different fibers. But it is a fact that this trivial connection is not

the only flat connection on the circle. Indeed, any real-valued 1-form defines a new

connection and if the integral of the 1-form around a loop is not zero, then the new

connection is fundamentally different from the trivial connection.

We claim that the set of complex numbers of modulus one are in bijective corre-

spondence with the distinct classes of connections. Define the real-valued 1-form dθ on

the circle such that its integral around the circle is 2π.4 Let ∇ be the trivial connection

associated with S1×C. Then ∇+ i β2πdθ defines a flat connection; the parallel transport

of v along the path α is given by

Pαv = e
∫
α i

β
2π
dθv.

Thus, around a closed loop of multiplicity n, we have that multiplication by einβ is the

parallel transport operator. Note that although it is no longer the trivial flat bundle,

the bundle is still trivial as a vector bundle.

As for the relation to the Aharonov-Bohm setup, the fact of the matter is that

β should be the integral of the magnetic field over the disk. Furthermore, there is a

vector potential which generates the magnetic field and, restricted to the circle, it is

β
2πdθ. This is essentially the original explanation of the Aharonov-Bohm effect.

4.4.2 General discussion

The circle is a nice example since it implements the idea of changing the connection

on the bundle. In more general situations, this changing of the connection actually

requires a change of the underlying bundle structure. We therefore formulate the general

discussion in terms of constructing a new bundle out of an old bundle. This method

4Parametrize the circle with the multi-valued angle function θ and differentiate.
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provides the appropriate connection and it may or may not change the underlying vector

bundle.

Inspired by the case of fermions, as discussed in the next chapter, we shall formu-

late the new principle slightly differently than one might expect: tensor the original

bundle with a flat cc-Hermitian line bundle. It is a fact that the flat cc-Hermitian

line bundles are in bijective correspondence, up to equivalences, with the characters

of the fundamental group. Indeed, the representation associated with a flat bundle is

its holonomy representation; the holonomy representation, at q, is the map taking each

element σ ∈ π1(Q, q) to the matrix associated with parallel transporting vectors around

a representative curve of σ. Flatness implies this map is well-defined, i.e. parallel trans-

port on flat bundles only depends upon the homotopy class of the curve. For a line

bundle, a matrix is just a complex number; to preserve the inner product, it must be an

element of the unit circle. Therefore, every flat line bundle has an associated character.

The connection for the tensor product F ⊗ E of two bundles is defined using the

Leibniz rule:

∇F⊗E(f ⊗ e) = (∇F f)⊗ e+ f ⊗ (∇Ee).

It can also be realized by tensoring the holonomy operators together. Computing the

Laplacian, we find

∆F⊗E(f ⊗ e) = (∆F f)⊗ e+ f ⊗ (∆Ee) + 2(∇F f) · ⊗(∇Ee).

Furthermore, it is an easy fact that in computing the curvature, the cross terms cancel

rather than add.5 Thus, if E has curvature and F is a flat line bundle, then F ⊗E will

have the same curvature as E. Any potential V , defined on E, goes to Id ⊗ V , which

may reasonably be viewed as V since F is one dimensional, i.e Id = 1. Thus, we have

5The curvature, ω, is the antisymmetric part of the second derivative. In particular, for a tensor
product, we have

D2(f ⊗ e)(x, y)−D2(f ⊗ e)(y, x) =D2f(x, y)⊗ e+Df(x)⊗De(y) + f ⊗D2e(x, y)+

Df(y)⊗De(x)− (D2f(y, x)⊗ e+Dfy ⊗De(x)+

f ⊗D2e(y, x) +Df(x)⊗De(y)).

Thus, we have ωF⊗E = ωF ⊗ Id + Id⊗ωE . In particular, if F is a flat line bundle, we can appropriately
say that the curvature is unchanged under tensoring with F .
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the Abelian Quantization Principle based on changing the connection; we shall denote

it by AQP∇.

Principle 3 (Abelian Quantization Principle, ∇). To specify a Bohmian theory,

one needs to pick a Riemannian manifold Q, a cc-Hermitian vector bundle E over Q,

a potential V , and a character γ of the fundamental group π1(Q). Let F be the flat cc-

Hermitian line bundle corresponding to γ. The Bohmian theory (Q, E, V, γ)∇ is defined

by (3.4) where the wave function ψt is a section of the bundle F ⊗ E.

4.4.3 Equivalence of the two approaches

The bundle approach and the covering space approach are completely equivalent as we

shall now explain. We start with the bundle E and denote its holonomy operator for the

path α by PEα .6 We now have two approaches for forming theories. One is to consider

various periodicity conditions, involving scalars, on the covering space; the other is to

tensor E with the various flat line bundles. Both are characterized by a character of

the fundamental group. We contend that either way produces equivalent theories for

equivalent characters.

Before we produce the equivalence, we first discuss the canonical isomorphism be-

tween the covering group and the fundamental group based at a point. There are two

natural bijections and it is the less obvious one which is relevant, as we now explain.

Let ρ be the projection map from Q̂ to Q. Then ρ(α) = ρ(σα) for all paths α on Q̂

and for all σ ∈ Cov(Q̂,Q). This is trivially true since the covering transformations

map each covering fiber to itself and ρ projects all points of the fiber to the same base

point. Given q̂ ∈ Q̂, and q := ρ(q̂), we can define an isomorphism between π1(Q, q) and

Cov(Q̂,Q). The obvious bijection from Cov(Q̂,Q) → π1(Q, q) is to map the covering

transformation σ into the projection of any path taking (q̂ → σq̂). This is fine as a

bijection, but it fails to be an isomorphism.7 To find an isomorphism, we map it to the

6We should emphasize that we are not assuming that the connection on E is flat. Thus, the holonomy
operator depends on the path itself and not just the homotopy class of the path.

7To be an isomorphism, we would need ρ(q̂ → στ q̂) ∼ ρ(q̂ → σq̂) ◦ ρ(q̂ → τ q̂). We certainly have
ρ(q̂ → στ q̂) ∼ ρ(τ q̂ → στ q̂) ◦ ρ(q̂ → τ q̂) and therefore only need ρ(q̂ → σq̂) ∼ ρ(τ q̂ → στ q̂). But, in
actual fact, we can only conclude ρ(q̂ → σq̂) ∼ ρ(τ q̂ → τσq̂) by applying τ to the left hand side. If the
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inverse of the above map. More precisely, map σ into ρ(σq̂ → q̂) ∼ ρ(q̂ → σ−1q̂). This

is an isomorphism as is easy to check.8 Hence, we have a representation of the funda-

mental group if and only if the image under this isomorphism is a representation of the

covering group. Abstractly, they will be the same representation. This isomorphism is

exactly what comes out of the following equivalence.

Theorem 1. The principles generate equivalent Bohmian theories, i.e.

(Q, E, V, γ)Q̂ ' (Q, E, V, γ)∇.

Proof. Let F be the flat line bundle associated with γ. The proof will go as follows. We

start with (Q, E, V, γ)∇. We lift the bundle G := F⊗E and show that the lifted sections

are essentially the sections of the lift of E which satisfy the periodicity condition γ. We

also show that this mapping commutes with the evolutions.

We start by lifting the bundle F to the covering space; as usual, we denote its lift by

F̂ . Since F̂ is flat and Q̂ is simply connected, it is trivializable. Let φ be a trivialization

map of F̂ . That is to say, φ : F̂ → Q̂×C should be a bundle isomorphism preserving the

connection, i.e. ∇(φ(ψ)) = φ(∇ψ) for any section ψ of F̂ . We now lift G to Ĝ = F̂ ⊗ Ê.

The Bohmian theory on Ĝ with the trivial periodicity condition is completely equivalent

to the Bohmian theory on G. Apply Φ := φ ⊗ Id to Ĝ; this is clearly an isomorphism

between Ĝ and Ê. Furthermore, it commutes with the covariant derivative due to φ

being connection-preserving. We also know that it commutes with all potentials since

it is essentially a scalar. More to the point, if ψt is a section of Ĝ and it is a solution

to the appropriate Schrödinger’s equation, then we have

i
∂ψt
∂t

= Hψt ⇔ i
∂Φ(ψ)t
∂t

= HΦ(ψ)t (4.4)

vψt = vΦ(ψ)t . (4.5)

Thus, once we establish the claim below, we will have shown that these theories are

equivalent.

covering group is not abelian, then this bijection is not an isomorphism, but an anti-isomorphism.

8To be an isomorphism, we would need ρ(q̂ → (στ)−1q̂) ∼ ρ(q̂ → σ−1q̂) ◦ ρ(q̂ → τ−1q̂). Since
ρ(q̂ → (στ)−1q̂) ∼ ρ(τ−1q̂ → τ−1σ−1q̂) ◦ ρ(q̂ → τ−1q̂), we need ρ(q̂ → σ−1q̂) ∼ ρ(τ−1q̂ → τ−1σ−1q̂)
which is what we have by applying τ−1 to the left hand side.
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Our claim is that ψG is a lifted section of G if and only if ψE := Φ(ψG) satisfies

ψE(σq̂) = γσψE(q̂). To see this, consider what the partial trivialization is. Given points

q̂, r̂ ∈ Q̂, then the trivialization φ satisfies

φr̂ = P Q̂×Cq̂→r̂ φq̂P
F̂
r̂→q̂ = φq̂P

F̂
r̂→q̂;

this follows from the fact that the trivialization is parallel and that parallel transport

on the trivial flat bundle is trivial. Thus, if we map ψG, a lifted section of G, using this

partial trivialization to a section of Ê, ψE , we find the following:

ψE(σq̂) =Φσq̂ψG(σq̂) = Φσq̂ψG(q̂)

=Φq̂(P F̂σq̂→q̂ ⊗ Id)ψG(q̂) = Φq̂(P F̂σq̂→q̂ ⊗ Id)Φ−1
q̂ ψE(q̂) = γρ(σq̂→q̂)ψE(q̂);

it is important to note that P F̂σq̂→q̂ = γρ(σq̂→q̂) which is the defining property of F . This

demonstrates that the mapping injects into the set of wave functions in Ê satisfying

the periodicity condition. We must show that it is onto. But this is just a rewriting of

the above series of equations.

As an immediate application of this theorem, we have that the covering space de-

scription of the Aharonov-Bohm effect is equivalent to the vector potential description;

it is important to appreciate the correct isomorphism in order to make the correct

correspondence.

4.5 Self-adjoint extensions from cutting

We now pursue the functional analytic approach. This approach is concerned with

different self-adjoint extensions of the formal Hamiltonian on the same L2 space. We

will formulate a principle based on this approach and it will correspond to the previous

approaches. In particular, for each character of the fundamental group, we shall have a

corresponding Bohmian theory. We first introduce the rough picture and then provide

bite-sized pieces of a precise treatment.

The idea is to cut Q in order to make it simply connected. That is to say, we shall

specify a set κ ⊂ Q such that Q̄κ := Q\κ is a simply connected open set. We shall also



61

demand that κ be appropriately smooth and minimal. If E is a bundle over Q, then Ēκ

denotes the restriction of E to Q̄κ. We also have an induced Hamiltonian acting on the

sections with compact support in Q̄κ. But such wave functions no longer form a domain

of essential self-adjointness for H in the Hilbert space L2(Q, E). We therefore need to

choose a self-adjoint extension of H. Generally, there are many different extensions. For

us, a self-adjoint extension will be acceptable only if the resulting Bohmian evolution

cannot be used to detect which cut was used to generate the theory.

4.5.1 The circle

Let us consider our canonical example, Q = S1, E = Q × C. We parametrize the

circle with the angle θ. A cut κ corresponds to choosing a point; say κ = 0 in the

parametrization. Once we cut it, then we may view the space as the interval [0, 2π]. We

wish to consider various self-adjoint extensions of the Laplacian defined on C∞0 ([0, 2π]).

The domains of essential self-adjointness which correspond to the ones we have found

before consist of functions in C∞([0, 2π]) satisfying the boundary condition Dnψ(2π) =

γDnψ(0).9 This corresponds to the periodicity condition ψ(θ + 2π) = γψ(θ) on Q̂ and

it also corresponds to having the connection ∇− ln(γ)
2π dθ on Q× C.

It is a fact that the full set of self-adjoint extensions is a family parameterized by

four parameters. The extensions above are characterized by just one parameter. How

do we discard the other extensions? The idea is that the Bohmian evolution should not

depend upon which cut was chosen; in this regard, a cut should be thought of as a choice

of coordinates. For example, if we choose the extension with boundary conditions that

ψ vanishes at both endpoints, then we know that typically, the particle’s trajectory will

not cross the cut point. This is the kind of dependence that we are trying to avoid. A

variety of extensions have the property that the velocity field is ill-defined at the cut

point; we certainly would exclude those extensions. There is one family of extensions

for which the velocity field is defined and continuous at the cut point, but it is not

smooth at the cut point. We exclude them as well. This leaves us with only the ones

9Here γ must be of modulus one so that the Hamiltonian is symmetric on this domain as an inte-
gration by parts argument demonstrates.
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we had previously.

We have roughly described why the other cuts are unsuitable from our perspective.

The question is now whether the boundary conditions we consider good actually satisfy

being cut-independent. Choose γ1 and γ2 such that γ = γ1

γ2
. Another cut, κ′ ∈ (0, 2π),

would correspond to [κ′, κ′ + 2π]. A unitary equivalence map Uκ
′κ from κ′ to κ, which

preserves the Bohmian velocities except at the cut points, is

Uκ
′κ(θ)ψ(θ) :=


γ1ψ(θ) θ ∈ (0, κ′)

γ2ψ(θ) θ ∈ (κ′, 2π)
.

As this map is constant away from the cuts, it is rather self-evident that the Bohmian

velocity field is unchanged under this mapping. Furthermore, this is a bijection between

the domains; choosing the γi so that the ratio is γ is the key fact. This ensures that the

discontinuity at κ′ disappears while the smoothness at κ is replaced with a discontinuity

ensuring that the wave function satisfies the boundary condition. As the wave function

evolution will commute with this mapping, we can see that the Bohmian evolution is

independent of which cut is chosen in the formation of the Hamiltonian.

Let us make a couple of remarks about approaches that did not work. If we were

to demand that the wave function’s evolution is independent of the cut, then the only

allowed boundary condition is the trivial periodic boundary condition; the only domain

which is independent of the cut is the one in which ψ, and its derivatives, agree at the

boundary. Another possibility, one which is too weak, is that of unitary equivalence.

On the circle, given any extension based on a cut, we can implement a rotation on the

circle and obtain a unitarily equivalent evolution based on another cut. That is to say,

unitary equivalence excludes nothing.

4.5.2 What is a cut?

We first need to define what a cut is. After doing that, we consider certain illuminating

examples although the most illuminating is in the context of identical particles as

discussed in the next chapter.

A cut, κ, is a closed subset of Q satisfying
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1. Its complement, Q̄κ, is a simply connected set.10

2. If Q̄κ ⊂ A and A is an open, simply connected subset of Q, then A = Q̄κ.

3. The cut κ should be smooth in the sense that about any point p ∈ κ, there is

a neighborhood V such that V ∩ κ is the union of a finite number of regular,

(n− 1)-dimensional submanifolds.11

For S1, an (n− 1)-dimensional submanifold is a point. If we remove more than one

point, then the resulting space ceases to be connected. Thus, a cut κ for the circle is

the removal of a single point. For the torus, T 2, an example of a cut is the removal of

a horizontal circle and a vertical circle. Their intersection is typically a single point.

In the usual representation of the torus as a square in the plane, the boundary of the

square is the cut κ and the interior is the fundamental domain, Q̄κ. Analogously, if we

take a cube in R3 and identify opposite sides to obtain T 3 = S1 × S1 × S1, then the

boundary of the cube is a cut. Notice that it consists of the union of three copies of

T 2. The twelve edges of the cube are the three circles each of which corresponds to an

intersection of two of these surfaces. The corners correspond to the single point of T 3

in which all three manifolds intersect. In contrast, a vertical cylinder’s cut is a vertical

line which is a single (2− 1)-dimensional submanifold with no self-intersections.

4.5.3 BV-equivalence and cut-independent self-adjoint extensions

We shall now make a precise expression as to what it means for the Bohmian evolution

to be independent of the cut. We define two self-adjoint operators H1 and H2 to be

BV-equivalent iff there exists a unitary operator U : L2[Q, E]→ L2[Q, E] such that

1. vψ(q) = vUψ(q) almost everywhere (w.r.t. Lebesgue measure)

10We take simply connected to also imply that the space is connected.

11A regular submanifold is one in which every point of it has a coordinate chart in the manifold in
which the submanifold looks like a subspace in that coordinate system. This assumption of regularity
is to avoid having a boundary such as the following in the plane: {(x, sin( 1

x
))|0 < x ≤ 1} ∪ {(0, y)|y ∈

[−1, 1]}. That is not the kind of boundary we want. Note that in that example, any small neighbor-
hood about the origin has an infinite number of disconnected lines arising from the intersection of the
submanifold with the neighborhood.
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2. UH1ψ = H2Uψ for every ψ in the domain of H1.

This does define an equivalence relation on the set of self-adjoint operators.12 We

shall state what these conditions imply, but we shall only give a rough argument in

establishing the implications.

Since the velocity fields must be defined at the same places (almost everywhere), the

supports of ψ and Uψ must be the same. This implies that U is a unitary matrix-valued

function over Q, i.e. (Uψ)(q) = U(q)ψ(q), with U(q) a unitary matrix acting on the

value space of ψ.13 Furthermore, U should be smooth except for a set of measure zero;

the set of measure zero arises since we only demand agreement up to a set of measure

zero. We can then use the preservation of the velocities to conclude that U has to be

constant in any region of smoothness.14 The second condition implies that U bijectively

maps the domain of H1 to the domain of H2.15

Equipped with a satisfactory notion of equivalence, we shall state precisely what

cut-independence of the extension means. Given a cut κ, we define H0
κ to be the

formal Hamiltonian −∆ + V with domain C∞0 (Ēκ). By Hκ, we shall mean a self-

adjoint extension of H0
κ. Then Hκ is cut-independent iff for each cut κ′, there is a

corresponding Hκ′ which is BV-equivalent to Hκ. Although there are many choices, we

shall simply assume that a BV-equivalence map taking Hκ → Hκ′ has been chosen; it

will be denoted by Uκκ
′
.

12Composition of two BV-equivalences is clear enough. As for the inverse of BV-equivalence being a
BV-equivalence, the first property is still clear. For the second property, the domain is the issue. To
resolve it, take the adjoint of the equation and use the facts that both H1 and H2 are self-adjoint and
U is unitary. Thus, one can conclude U−1H2 = H1U

−1.

13This follows from the fact that U commutes with all of the position spectral measures. If we were
discussing only scalar valued wave functions, we could then say that U is diagonalizable in the position
representation. The reason for the commutation is that if PA is a projection operator onto the wave
functions with support in A, then UPA(ψA +ψAc) = UψA = PA(UψA +UψAc); all that is necessary is
that U preserves supports.

14We really mean parallel, i.e. ∇U = 0. We shall generally use the term constant especially since U
will generally be a pointwise multiple of the identity.

15From an orthodox perspective, one would presumably demand that the local density is unaffected
by the unitary transformation. This immediately leads to U(q). To argue that it is locally constant,
one would need to invoke the commutation with the Hamiltonian. In particular, one needs [∆, U ] = 0.
This immediately leads to, acting on a test function ψ, (∆U)ψ + ∇U · ∇ψ = 0. Thus, U is locally
constant.
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4.5.4 The principle

We now establish a family of cut-independent self-adjoint extensions, one for each char-

acter. The construction is to appeal to the covering space to obtain the relevant evolu-

tion. To do this, we show that given a periodicity condition on the covering space, we

do have a corresponding cut-independent self-adjoint extension.

In many ways, the cut approach is a non-smooth version of the covering space ap-

proach. Indeed, select a fundamental domain16 R on the covering space whose boundary

is contained in the lift of κ. Given a character, γ, define

Λγ := {φ ∈ D(H)|φ(σq̂) = γσφ(q̂)∀q̂ ∈ Q̂},

the set of smooth sections of the lifted bundle Ê satisfying the periodicity condition

defined by γ. The unitary evolution on the covering space preserves this domain and

preserves the L2 norm of each section restricted to the region. Define the dense domain

of L2(Q, E)

Eκ,γ := {ψ|∃φ ∈ Λγ s.t. ∀q ∈ Q̄κ, ψ(q) = φ(q̂) for the unique q̂ ∈ (ρ−1(q) ∩R)}

and let ρR(φ) be the bijection making the correspondence between the elements of Λγ

and Eκ,γ . Then the covering space evolution defines a unitary evolution on Eκ,γ which

takes the domain to itself. Thus, if we define Hκ to be the formal Hamiltonian defined

on Eκ,γ , then Hκ is self-adjoint.

To establish that Hκ is cut-independent, we choose another cut κ′. We select a

fundamental domain R′ on Q̂ with a boundary formed from the lift of κ′. We do the

same process again to generate Hκ′ , choosing the same periodicity condition as the one

for Hκ. The BV-equivalence mapping is extremely simple. Let fRR
′

be the map taking

R to R′ which is defined away from the boundary. Then the BV-equivalence map is

Uκκ
′
ψ(q) = Uκκ

′
ρR(φ)(q) := φ(fRR

′
(ρ−1
R (q)) = γσ(q,fRR

′ )ρR(φ)(q).

In words, we take our wave function in Eκ,γ , lift it to the appropriate wave function on

the covering space, using the level R, then we project down the corresponding parts of

16A fundamental domain is a region of the covering space which bijectively corresponds, under the
projection map, to Q̄κ. In more general contexts, the boundary of a fundamental domain is allowed to
be quite wild.
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that wave function defined over R′. If q ∈ R∩R′, then the BV-equivalence map at q is

the identity. Elsewhere, it would be multiplication by the appropriate phase induced by

the periodicity condition. Thus, given a character and a cut, we have a cut-independent

self-adjoint extension of the formal Hamiltonian.

As a general principle, we can state the following.

Principle 4 (Abelian Quantization Principle, H). To specify a Bohmian theory,

one needs to pick a Riemannian manifold Q, a cc-Hermitian vector bundle E over Q,

a potential V , and a character γ of the fundamental group π1(Q). The Bohmian theory

(Q, E, V, γ)H is defined by (3.4) where the wave function ψt is a section of the bundle

E and H is the cut-independent self-adjoint extension defined by γ and the cut κ.

4.5.5 Characterization of cut-independence

Given a cut-independent self-adjoint extension whose BV-equivalence map is of the form

γqId, then there is an associated character of π1(Q). In general, the various unitary

representations of the fundamental group characterize the possible cut-independent

extensions; this can be argued in a similar vein as below. As shall be explained in the

next chapter, there is good reason to ignore such possibilities. Therefore, for the rest

of this section, BV-equivalence maps will be multiples of the identity.

Theorem 2. Let E be a cc-Hermitian vector bundle over the Riemannian configuration

space Q and V a potential acting on E. Let Hκ be a cut-independent self-adjoint

extension generating the Bohmian theory (Q, E, V )Hκ whose BV-equivalence maps are

scalar multiples of the identity. Then there exists a character γ such that (Q, E, V )Hκ '

(Q, E, V, γ)∇.

From the equivalence proved in Section 4.4, we can conclude that the set of cut-

independent self-adjoint extensions is characterized by the cut and a character.

Proof. We start with the cut-independent Hκ. Each pair (Ēκ′ , Uκκ
′
) is to be a general-

ized chart for our bundle.17 The transition map going from the chart of κ′ to the chart

17By generalized, we mean that we are not actually going to write down coordinate charts. Instead
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of κ′′ is the (BV-equivalence) map

Uκ
′κ′′ := Uκκ

′′
(Uκκ

′
)−1.

These maps are smooth away from the cuts κ′ and κ′′; we shall establish this later. We

then form the disjoint union of all of these charts and define our vector bundle to be

the set of equivalence classes under the relation

(q, v)κ′ ∼ (q, w)κ′′ iff Uκ
′κ′′v = w; (4.6)

By (q, v)κ′ we mean that q ∈ Q̄κ′ and v ∈ Eq. Because BV-equivalence is an equivalence

relation, the relation above is indeed an equivalence relation. Quite generally, it can be

shown that this setup does define a bundle as is often done in the context of physics.

We shall call this bundle G. Parallel transport is defined, in a chart, as the parallel

transport in E. Furthermore, Hκ defines a Schrödinger evolution with the correct

formal Hamiltonian on G; cut-independence is important to show that the evolution in

any of the other charts is compatible. The first property for BV-equivalence establishes

that the Bohmian evolution will be the same either using Hκ or the bundle G.

All that remains is to demonstrate that G = Fγ ⊗ E, for some flat line bundle

Fγ . For this, consider the parallel transport of the element v ∈ Eq, q ∈ Q̄κ, around

the closed loop α, parametrized in the interval [0, 1]. For simplicity, assume that Q̄κ

and Q̄κ′ form a cover of α and that it is possible to find t1, t2 such that αt ∈ Q̄κ for

t ∈ [0, t1] ∪ [t2, 1] while αt ∈ Q̄κ′ for t ∈ [t1, t2]. Then parallel transport along α is

PGα0→α1
v = P Ēκαt2→α1

Uκ
′κ

αt2
P
Ēκ′
αt1→αt2U

κκ′
αt1
P Ēκα0→αt1

v = Uκ
′κ

αt2
Uκκ

′
αt1
PEα0→α1

v

where we used the fact that the BV-equivalence maps commute with the parallel trans-

port operators which is especially true as they are just scalars. Thus, we have that

parallel transport is just parallel transport in E times a phase factor. To finish the

argument, we need to argue that the phase factor depends only on the homotopy class

of the curve. This follows from two facts. First, within a chart, we can smoothly vary

these are neighborhoods with a bundle structure already implied. Our construction does not require us
to go to coordinates; it only requires us to have patches that we can put together differently.
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the path α without changing the phase part since BV-equivalence maps are constant

away from the boundaries. Second, parallel transport is independent of the charts.

Except for establishing smoothness of the BV-equivalence maps, we have arrived at

our result. The flat line bundle that we tensor with E has the holonomy given by the

phase holonomy constructed from the BV-equivalences as done above.

We now establish some smoothness results. We need this to demonstrate that the

transition maps are smooth where they are supposed to be. This will also establish that

the appropriate wave functions in the domain of Hκ, those that are smooth enough

to provide a Bohmian evolution, actually become the smooth sections of G in the

construction. Although this seems like a side remark, it is actually quite important as

it demonstrates the restrictions placed on the BV-equivalence maps due to property 2

of the definition for being a BV-equivalent map.

Given an operator A, let D(A) be the domain of A. Define C∞(A) :=
⋂∞
n=1D(An).

Let Hκ be a cut-independent self-adjoint extension and Hκ′ be a BV-equivalent exten-

sion. Then, from the definition of BV-equivalence, it is clear that C∞(Hκ) is mapped

into C∞(Hκ′). By Sobolev regularity theorems for the Laplacian, we actually have that

C∞(Hκ) consists of smooth functions away from the boundary and these functions, and

their derivatives, have limits as one approaches the boundaries. Therefore, the image

of a smooth section under a BV-equivalence map is smooth. Since a BV-equivalence

map is multiplication by a function, we can deduce that the BV-equivalence map must

be smooth away from the boundaries. Furthermore, the jumps along a given cut are

prescribed by the domain of the extension corresponding to that cut.

Since BV-equivalence is an equivalence relation, the same statement holds for the

composition of BV-equivalence maps. Thus, the map Uκκ
′
Uκ
′′κ is smooth along κ

wherever κ does not intersect either of the other cuts. One can also then understand

that under the equivalence map defining the bundles, sections in C∞(Hκ) that might

not look smooth along the boundary do get mapped to sections that are smooth along

κ in the new chart although they will generally cease to be smooth along the cut of the

new chart.
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4.6 Comparisons

In this chapter, we have described three very different approaches to finding various

theories. To summarize, we have shown that there is only one Abelian Quantization

Principle, i.e.,

(Q, E, V, γ) := (Q, E, V, γ)Q̂ ' (Q, E, V, γ)∇ ' (Q, E, V, γ)H .

Although equivalent, each approach had a different feeling to it. Indeed, the covering

space approach is to change the domain of the wave function into a simply connected

space. The bundle approach is to change the notion of derivative; to a certain extent,

we can view this as changing the range of the wave function. The self-adjoint extension

approach directly changes the Hamiltonian. It is not at all obvious that all three

approaches should have worked and it is quite remarkable that they produce the same

possibilities. We shall now attempt to contrast the three approaches.

Our first approach was to use the covering space; this is a topological solution. In-

deed, since topology is responsible for these extra possibilities, it seems quite natural

to attempt to trivialize the topology. The usual topological mechanism for a trivial-

ization is the use of the simply connected covering space particularly when gradients

are involved. We used Bohmian mechanics to explain why the covering space is useful.

The Bohmian constraint is the condition of projectability of the velocity field. The im-

mediate solution is the scalar periodicity condition. We demonstrated that this works

for any Bohmian theory. In the next chapter, we shall show that, generically, the scalar

periodicity condition is the only periodicity condition that works. The true advantage

of the covering space is its simplicity. Noticing that it is a character which is at work is

immediate. It also provides a single framework for all of the various possible theories.

A minor disadvantage is that the covering space causes certain worries to occur. One

worry, easily dismissable, but very tempting, is to be bothered by the possibility of

wave functions on the covering space whose Bohmian velocities project down to the

base space for all time without satisfying any periodicity conditions. The appropriate

response is that the goal is to find theories, not exceptions, but many may be unsatisfied

with this. Another worry, of a very technical nature, is that for spaces with infinite
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fundamental groups, the wave functions satisfying a periodicity condition are not in

L2. This technical problem can be dealt with in a variety of ways, such as appealing

to the other approaches or perhaps to the theory of rigged Hilbert spaces, but it is still

an annoyance.

The approach of considering different self-adjoint extensions is a functional analysis

approach. The issue is, after all, about the evolution of a system. But in order to

consider these possibilities, we had to the cut space in such a way to make it simply

connected. Then our self-adjoint extension could be thought of as describing what

happens along this virtual boundary. The picture to have is that as a wave packet

passes through the boundary, it picks up a phase. But considering all self-adjoint

extensions is to consider a great number of possible theories. The necessary demand for

the extension to be physically reasonable was that the extension was cut-independent.

This notion was grounded in the Bohmian evolution not detecting which cut was used.

We immediately constructed a cut-independent extension for each character; one way

was to appeal to the covering space. But in this context, it seemed necessary to rule

out the vast number of other possibilities, which we did. Unlike the covering space,

these possibilities did form their own theory. We dismissed them on the grounds that

they introduced an element assumed to be not in the physics, in much the same way

that physics demands an appropriate invariance under coordinate changes.

The bundle approach is a geometric solution. As wave functions are sections of a

vector bundle, the idea is to consider various different connections potentially involving

various bundles. The important fact is that having a non-trivial fundamental group

implies the existence of inequivalent flat bundles. This allowed us to define different

Bohmian theories by tensoring the original bundle with a flat line bundle. Interestingly,

the bundle approach does not seem to offer any wrong directions. We had no isolated

wave functions and we had no obvious alternative theories. In terms of tensoring with a

line bundle, only the flat ones are allowed and they are easily classified. One could ask

the question if it is possible to have locally equivalent bundles which are not constructed

in this manner. This is the case for flat bundles, as all flat bundles of a given dimension

are locally equivalent to each other, but from the experience with spin as detailed in
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the next chapter, it seems that the only generically permitted construction is tensoring

with a flat line bundle.

One strength of the bundle approach is in the following question: Given the existence

of certain structures, such as spin, necessary for the kinds of theories we want, what

are the possible bundles over the configuration space that can support these structures?

Although interesting, this question is not what this work is addressing. Indeed, that

question applies for simply connected spaces and requires the consideration of very

specific theories such as those involving spin.

As to the role of Bohmian mechanics in these considerations, the main role is to

solidify the notion that wave functions are not primary objects and to explain what is of

primary concern, namely the particles and their evolution. Indeed, the wave function

does not need to be well-defined on the base space, only the Bohmian velocity field

needs to be. To put it more succinctly, wave functions should be thought of as more

in the nature of potentials, which are certain artifacts of describing the dynamics, and

less in the nature of electromagnetic fields, which are actually exact objects.

And yet we are not implying that these arguments cannot be made in standard

quantum mechanics. If one accepts, as an axiom, that the local density is the central

object in the theory, then the same results will follow in almost the same way. The

cut approach would replace the preservation of the velocity fields with the preservation

of the density. In the covering space approach, the projectability of the density would

replace the projectability of the velocity field. The only actual change in the arguments

would be the need to use the Laplacian to demonstrate local constancy of the periodicity

or boundary conditions.

4.7 Local equivalence

A hidden principle that we have found to be a useful guide is that of local equivalence.

Given the data (Q, E, V ), the various theories generated by the Abelian Quantization

Principle are all locally equivalent to each other. This means that only global consid-

erations can distinguish the theories.
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What does local equivalence mean? Roughly, the equations of motion look locally

the same. The objects generating the theory such as g, ∇, and V are all local objects

and, in a certain sense, locally they remain unchanged. The global difference comes

in from the character. Another way of saying what local equivalence is, is to consider

coordinates in a neighborhood and write down the equations, restricted to that neigh-

borhood, in those coordinates. The theories are locally equivalent if, in the appropriate

coordinates, the equations are the same. Appropriate coordinates means the following.

Pick a point q ∈ Q and a simply connected neighborhood of q. Choose a basis of the

tangent space at q and a basis of E at q. Then pick normal coordinates for Q and

parallel transport the basis of the vector bundle along the geodesics in Q. One can

then show that the equations are the same.

Local equivalence helps us limit the possibilities. This chapter has shown that, as

far as we can imagine, AQP describes all the possible locally equivalent theories. But if

we allow the dimension of the bundle fiber to change, then we can find other theories for

which the theories are locally equivalent in terms of individual components, but they

are not, strictly speaking, locally equivalent as the number of components is different.

More to the point, if G is the tensor product of E with some flat bundle F , then there

is no local isomorphism between G and E if F is not a line bundle. Nevertheless, if the

initial wave function is a product state, then its evolution will locally look like it is a

section of E. The relevance of such possibilities is rather unclear.

4.8 Quantization of classical systems

We finish the chapter by indicating how to quantize a classical system from a Bohmian

point of view. The procedure is little more than Schrödinger quantization, i.e. writing

down Schrödinger’s equation. One of the uses of Bohmian mechanics is that this is

all that needs to be chosen; the Bohmian velocity law is always the same. Bohmian

mechanics also provides the appropriate framework in order to recover the classical

system in the classical limit of the quantum theory. Finally, we use the ideas of this

chapter to quantize a classical system whose force is only locally a gradient, i.e. the

potential is only well-defined on the universal covering space.
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4.8.1 Newtonian dynamics on a manifold

We start with a Riemannian configuration space Q, with metric g, and a real-valued

potential function V defined on Q. This is enough information to define a classical

evolution on Q. Indeed, the Levi-Civita connection, defined by the metric, allows the

acceleration vector to be defined. The metric also provides a canonical isomorphism

between 1-forms and tangent vectors. Thus, given V , we have Newton’s equation:

Q̈ = −∇V . Equivalently, Newton’s equation may be written, in terms of 1-forms, as

g(Q̈, ·) = −dV (·). An immediate consequence of this equation is conservation of energy,

1
2g(Q̇, Q̇) + V (Q) = E.

4.8.2 Bohmian Quantization

The question we address is what the corresponding quantum system is. The general

prescription is that our wave functions are to be complex-valued functions and the

Hamiltonian is −∆+V . The wave function evolves according to Schrödinger’s equation

(3.2b). This is Schrödinger quantization. To complete the theory, we take Bohm’s

equation (3.2a) as defining the evolution of the particles.

This should be contrasted with standard quantum mechanics in which the theory is

only fully specified after the relevant observables are chosen. This can be tricky since

generally the momentum operator does not exist, e.g. the half-line, or the position

operator does not exist, e.g. the circle. The relevant data for quantum theories does

exist, as can be deduced from Bohmian mechanics, but the story becomes much more

complicated and requires the finesse of a master in order to do it correctly without the

aid of Bohmian mechanics.

4.8.3 Classical limit

When one quantizes a system, the main purpose is to form a quantum theory which,

under certain suitable conditions, will behave like the given system. From a Bohmian

perspective, this is formally clear. Indeed, just as in Rn, we can write Schrödinger’s

equation, using the polar form ψ = ReiS/~, as two coupled real equations. One of
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the equations is the Hamilton-Jacobi equation for the above classical system with an

additional term, the quantum potential (−~
2∆R
2R ). Thus, in any region in which this

potential may be considered negligible, the system will behave classically in that region.

Giving a precise story of when it is negligible is subtle; see [5]. The main lesson to learn

is that in Bohmian mechanics the classical limit only involves demonstrating that the

trajectories of the actual particles are approximately classical. In contrast, standard

quantum mechanics must explain what objects are supposed to behave in a way in

which the classical world will emerge.

We conclude this subsection with what this chapter tells us about quantization.

Although the above quantization procedure does define a unique theory given V , it

is not necessarily the only Bohmian theory with that classical limit. If Q is multiply

connected, then the Abelian Quantization Principle tells us that for each character of

the fundamental group, we have a different Bohmian theory involving the potential V .

Section 4.7 explained that these theories are locally equivalent. Since the classical limit

is largely based on a local viewpoint, we can expect that these various theories all have

the same classical limit. To distinguish between them, one must consider the quantum

effects.

4.8.4 Potentials on the covering space

We have been assuming that we have a time-independent formal Hamiltonian well-

defined onQ. One can ask the question about quantizing systems with a potential which

is only defined on the covering space; an example is having a constant electric field along

a circle. Alternatively, we could also pursue time-dependent, topologically motivated

connections, such as having a time-dependent magnetic field in the Aharonov-Bohm

setup. On the surface, these seem to be areas where the approaches are inequivalent.

On closer inspection, these are, in fact, the same phenomena.

We start with Q and a 1-form ω which is closed but not exact on Q. The model

spaces to think about are the circle and the torus. We take ω to be our classical force,

and we have its potential V on the covering space, but not on the base space. We

therefore consider the Bohmian system on the covering space which corresponds to
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−∆ + V , and the relevant set of wave functions will be those that consistently project

down. We claim that the periodicity condition now becomes time-dependent. More

to the point, our space of wave functions will be a disjoint union over the periodicity

conditions and any particular wave function will evolve from one sector to the next.

Note that the space of wave functions ceases to be a linear space.

To establish what we just claimed, we start with a wave function on the covering

space satisfying

ψ(σq̂, 0) = γσψ(q̂, 0). (4.7)

Our claim is that if V (σq̂) = V (q̂) + βσ for all q̂ and σ, then

ψ(σq̂, t) = γσe
−iβσtψ(q̂, t). (4.8)

We can establish this by noting that if φ is any solution to Schrödinger’s equation, then

φσ(q̂, t) := γ−1
σ eiβσtφ(σq̂, t)

is also a solution to Schrödinger’s equation. That is a simple computation. If ψ satisfies

equation (4.7), then ψσ(q̂, 0) = ψ(q̂, 0). Hence, by uniqueness of solutions,

ψσ(q̂, t) = ψ(q̂, t)

which is equation (4.8). That is to say, we have time-dependent periodicity conditions.

Furthermore, as above, in the classical limit the motion on Q should look Newtonian

with force ω.

We now wish to argue that the above Bohmian system is equivalent to a Hamilto-

nian with a time-dependent connection, but with a fixed periodicity condition. Quite

generally, we claim that the Bohmian systems

(−∆ + V,∇) ∼ (−(∇− itdV )2,∇− itdV ) (4.9)

are equivalent under the map ψ 7→ eiV tψ.18 Again, a simple computation establishes

this. If we make this change, then the time-dependent mapping cancels the time-

dependent change of phase in the periodicity condition. Hence we are left with the

18If V depends on t, then we would replace V t with W :=
∫
V dt and replace tdV with dW .
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initial periodicity condition as the condition for all t. We may thus define a flat bundle

over Q, by using the time-independent periodicity condition. As dV is well-defined

on Q, the time-dependent connection on the bundle over the covering space induces a

time-dependent connection on the bundle over Q.

As for the cuts, it seems that time-dependent boundary conditions would be nec-

essary. Our scheme would be the following. Cut the space and define V up to the

boundary. If we use time-independent conditions, then the potential we are modeling is

the one corresponding to the lift of this discontinuous potential to the covering space.

The cut would certainly matter and presumably no BV-equivalence exists between the

different cuts. However, if we use a time-dependent boundary condition, as suggested by

the time-dependent periodicity condition, then the extension will be cut-independent.

Let us say a few words about this in relation to a quantum system on the circle.

On the circle, there are closed, but not exact, 1-forms. Indeed, a constant force along

the circle is represented by the the non-exact 1-form β
2πdθ. We shall suppress the dθ

as is customarily done. On the covering space we have a potential function, β
2πθ, and,

therefore, a well-defined Schrödinger’s equation. The periodicity condition is ψ(θ +

2πn, t) = γneiβntψ(θ, t). Such wave functions obviously define a Bohmian evolution

on S1. The change of connection which eliminates this time-dependent periodicity

condition is ∂
∂θ − i

β
2π t. Forming the induced line bundle over the circle, we have the

trivial bundle with connection

∇ :=
∂

∂θ
− i(α+ tβ

2π
)

where α satisfies γ = eiα. This connection incorporates both the periodicity condition

and the time-dependent connection on the covering space.
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Chapter 5

Many particle systems

This chapter demonstrates that Bohmian mechanics provides an argument for why the

wave function for a system of identical particles must have a certain symmetry; this

should be contrasted with the claim of some that the lack of precise trajectories in

standard quantum mechanics is the reason for such a constraint. There are others who

have discussed the Bohmian story of identical particles [54, 49, 18, 7]. Our particular

approach has the appeal that it is founded upon the Abelian Quantization Principle.

The principle implies multiple possibilities only for configuration spaces with non-

trivial topology. As we shall discuss, for N identical particles, the configuration space,

N
R

3, is the space of all N -element subsets of physical space. The space is a manifold

which is not simply connected; its fundamental group has two characters. Applying

the principle leads to the Bose-Fermi alternative. In order to apply our principle in the

case of spin, we define the spin bundle over N
R

3. It is an unusual definition; the fiber

at the point q ⊂ R3, is the N -fold tensor product of the 1-particle spin space with itself

using q as the index set for the tensor product. Once we have the spin bundle, then

the principle immediately leads to the Bose-Fermi alternative.

The literature on identical particles is quite extensive.1 We will only mention some

of the key papers that we managed to come across. The literature about the sym-

metrization postulate in non-relativistic quantum mechanics seems to have begun with

[43]. Both that paper and [31] focussed on observables. This approach is still used;

in [29], there is an argument for the identical particle case based on observables and

decomposition of the Hilbert space into permutation representations. A critique of such

1We found one compilation of references for the symmetrization postulate that contained over 350
references and yet it seemed far from complete.
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approaches may be found in [44]. The topological approaches began with [37] and its

use of Feynman path integrals on multiply connected spaces. An approach that changes

the connection on the configuration space is that of [39]; they include a brief discussion

for the case of spin. An orthodox approach, using the covering space and only dis-

cussing scalar wave functions, is discussed in [45]. The version for Nelson’s stochastic

mechanics may be found in Nelson [47] and its relevance is that it is that description

upon which this chapter is based.

We do not address the connection between spin and statistics. Our accomplishment

is to demonstrate that for each type of particle, there are two choices for theories that

locally look identical; the spin-statistics is an additional statement that gives the re-

lation between spin and statistics. It is usually derived in the context of relativistic

quantum field theory. In [8], the authors give an approach that does establish the

relationship between spin and statistics in the context of non-relativistic theories de-

scribing the creation and annihilation of particles with anti-particles. The approach

is based on making a radical change to the configuration space. Indeed, it ceases to

be a manifold and they devote many pages to arguing that the topology is reasonable

and simply connected. For scalar wave functions, this implies that only bosonic wave

functions are allowed. For spin, they specify how two particles can annihilate or cre-

ate one another; this mimics a full rotation in physical space acting on a 1-particle

spin space thereby providing the spin-statistics relation. In [11], the authors use the

Schwinger representation of spin to give an argument for the spin-statistics relation

in non-relativistic quantum mechanics. They postulated that a certain set of axioms,

which their specific construction did satisfy, would force the spin-statistics relation to

be true. The conjecture is false as they later found other constructions satisfying these

axioms, but not the spin-statistics relation [12].

This chapter is organized as follows. We start by explaining N
R
d. We follow this by

describing a set of cuts for that space. We then apply the Abelian Quantization Prin-

ciple to scalar-valued wave functions to conclude that the particles are either governed

by bosonic or fermionic wave functions if d ≥ 3. Anyons appear as possibilities if d = 2.

We make full use of the notion of a set-indexed tensor product in Section 5.3 when we
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discuss spin on the natural configuration space. Our principle immediately applies and

we obtain the usual Bose-Fermi alternative in the case of spin. Section 5.4.1 considers,

and then rules out, certain possibilities that go beyond the general principle. In the

specific case of identical particles, we give, in Section 5.7, a different kind of argument

for the Bose-Fermi alternative. Section 5.8 briefly highlights why classical mechanics,

involving identical particles and formulated on N
R
d, are not enriched by appealing to

the covering space if d ≥ 3. The final section describes a speculative idea as to how to

describe a system of distinguished particles as arising from a theory of indistinguishable

particles.

5.1 The configuration space of identical particles

This section explains why the space of N -element subsets of physical space is the cor-

rect configuration space. The usual way of dealing with identical particles is to label

them and then demand that the labelling is irrelevant to the motion of the particles.

The configuration space which we use, and which is certainly not novel, is a way of

formulating the dynamics without introducing the irrelevant structure of labelling. In

what follows, we shall take Rd to be the physical space and we require d ≥ 2.2

As a starting point, we might say that a dynamical system of N identical particles

is one in which the appropriate exchange of the initial conditions results in the new

solutions being the exchange of the old solutions. Note that to exchange the particles,

we have already distinguished them by more than just their locations. The statement is

then asserting that the dynamics does not notice the distinguishing characteristics. A

stronger statement, and one more to the point, is that exchanging two identical particles

has no effect on the world. It would then be logical to make no distinction between

the particles in forming the configuration space of the system. Fundamentally, we have

N points in physical space. Stating this mathematically, our configuration space is

the space of all N -element subsets of Rd. Instead of (q1, . . . , qN ), the configuration is

2For d = 1, the configuration space consists of a variety of simply connected components. The
principle will not apply and the statistics, in as much as they are present, only arise as boundary
conditions on the Hamiltonian.
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{q1, . . . , qN}. Instead of RdN , the configuration space of N identical particles is given

by

N
R
d := {S|S ⊆ Rd, |S| = N}.

A more familiar form is given by the following; it is the mathematical version of

starting with a labelled system and then removing the labelling. We define ∆ to be the

set of configurations of RdN having coincident points, that is to say,

∆ := {(q1, . . . , qN ) ∈ RdN |∃ i, j s.t. qi = qj}.

let Rd,N6= denote the set of noncoincident points in RdN , i.e.

R
d,N
6= := R

dN \∆.

Let SN denote the group of permutations of the set {1, . . . N}. This group acts freely

on Rd,N6= by permuting the indices, i.e.

σ(q1, . . . , qN ) 7→ (qσ1, . . . , qσN )

and the exclusion of ∆ implies that, for every nontrivial permutation, there are no fixed

points. Then the natural configuration space N
R
d can be (canonically) identified with

the Riemannian manifold of equivalence classes under that action; more compactly

N
R
d ∼= R

d,N
6= /SN .

From this identification, NRd is itself a Riemannian manifold. The identification also

correctly suggests that, in analogy with the torus, NRd is not simply connected.

5.2 Applying the Abelian Quantization Principle

For d ≥ 3, the universal covering space of NRd is Rd,N6= . As said above, a permutation

naturally defines a diffeomorphism on Rd,N6= ; the set of these diffeomorphisms forms the

covering group. The fundamental group at a point q ∈ N
R
d is the set of bijections

of the set to itself. Both groups are isomorphic to the permutation group SN . The

only characters of SN are the trivial one and the alternating one. The trivial character

defines the bosonic wave functions which satisfy the periodicity condition

ψ(σq̂) = ψ(q̂). (5.1)
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The alternating character defines the fermionic wave functions which satisfy the peri-

odicity condition

ψ(σq̂) = (−1)σψ(q̂).3 (5.2)

Applying the Abelian Quantization Principle, we conclude the Bose-Fermi alternative.

The case d = 2 is quite different since R2N
6= is not simply connected. The fundamental

group of N
R

2 is isomorphic to the braid group, not SN . There is a one-parameter family

of different characters for this group. Bosons and fermions are among the possibilities,

but there are many more. The reason that d = 2 is different is that a set of paths

that exchanges two particles twice may not be homotopic to the identity; more to the

point, these paths are in R2 × [0, 1], a space in which knots can occur. The generators

for the braid group may be chosen to be a certain subset of braids that exchange two

particles;4 they satisfy the relations

σiσj = σjσi for j 6= i± 1,

σiσi+1σi = σi+1σiσi+1.

The second relation implies that a character of the braid group assigns the same complex

number to each generator. If that number is eiβ, then the periodicity condition is

ψ(σ(q̂)) = ei|σ|βψ(q̂),

where |σ| is the, appropriately counted, number of generators defining σ. Bosons cor-

respond to β = 0 and fermions to β = π. The particles corresponding to the other

possibilities are usually called anyons. They were first suggested in [39], and their in-

vestigation began in earnest with [32, 56]. See [45] for some more details and references.

5.2.1 Identical particles moving in M

More generally, let physical space be the Riemannian manifold M . Then the configu-

ration space for identical particles would be the N -element subsets of M , denoted by

3The sign of the permutation, (−1)σ, is 1 if σ can be written as a composition of an even number
of transpositions, and −1 otherwise.

4More precisely, label the particles. Then σi is the path exchanging particles i and i+1. Furthermore,
these paths, which may be thought of as parametrized circles in the plane, should all have the same
orientations arising from the parametrization.
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NM . The tangent space of the configuration space at the point q is
⊕
q∈q TqM . Its

metric, if the particles all have mass m, is

Ng( ⊕
q∈q

vq, ⊕
q∈q

wq) :=
∑
q∈q

mg(vq, wq).

Then, as above, we can apply the principle to NM . We will always have bosons

and fermions as possibilities, but there may be more possibilities depending on the

dimension of M and M ’s fundamental group.

5.3 Identical particles with spin

The textbooks, when discussing identical particles with spin s, take the configuration

space to be Rd,N6= and the value space of the wave function to be the N -fold tensor

product of W := C
2s+1, the 1-particle value space, with itself. We denote it in various

ways: W1⊗ · · · ⊗WN =
⊗N

i=1Wi =
⊗

i∈{1,...,N}Wi = W⊗N . It is tempting to say that

each factor of the tensor product corresponds to each particle. But if we do this, we

are assigning a label i ∈ {1, . . . , N} to each particle. On N
R

3, there is no consistent

way of making such an assignment. Thus it may appear that the configuration space

N
R

3 is incompatible with spin, but it is, in fact, quite compatible. We associate a copy

of W not with each particle, but rather with every point in physical space R3. Even

in the standard story, labelling identical particles is not allowed. That is why, even for

bosons, there is a permutation action on the value space. If we wish to work on N
R

3,

we must define a tensor product which only labels the particles by their locations. We

do this by replacing the usual tensor product’s index set {1, . . . , N} with the N -element

set {q1, . . . qN} ∈ N
R

3. Instead of using
⊗

i∈{1,...,N}Wi = W⊗N , we form
⊗
q∈qWq =

W⊗q.

5.3.1 The spin bundle and a Bohmian theory

The use of an arbitrary finite index set is a straightforward notion. We wish to replace

{1, . . . , N} with the N -element set T . The ordering in the usual tensor product serves as

a way to map the factors of the tensor product bijectively to the elements of {1, . . . , N}.
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Analogously, a product element in the T -indexed tensor product of W with itself N -

times should be thought of as a function from T into W . The obvious analogues to the

usual definitions of the tensor product hold and we state them in Appendix A; one can

also find this definition in [15]. Here we shall content ourselves to make a notational

correspondence. The tensor product space W⊗N is replaced with W⊗T . The product

element ⊗Ni=1wi is replaced with ⊗a∈Twa. The usual tensor product rules still hold. For

example, ⊗a∈T xa +⊗a∈T ya = ⊗a∈T za if, for some a′ ∈ T , we have both xa′ + ya′ = za′

and, for all the other a ∈ T , xa = ya = za. This trivial extension of the commonly used

version of the tensor product is exactly what we need for spin.

We begin by defining the spin bundle,5 which we shall write as W⊗Q. Let W be the

single-particle spin space for our N identical particles. Given q ∈ Q, we define the spin

space at that point to be W⊗q. This defines the fibers for our spin bundle; one can use

the connection described below to define the bundle structure.6

We need to define the connection. We shall do this by specifying the equivalent

notion of parallel transport. Given two points q, q′ and a path α connecting them, then

we have a set bijection σα between q and q′ given by following the N trajectories in

physical space that α represents. This bijection of the index sets provides a natural

isomorphism between W⊗q and W⊗q
′
; this isomorphism will be the parallel transport

operator, or holonomy operator, associated to α. It is clear that it depends only on the

homotopy class of α. This in turn implies that the connection is flat. We shall use ∇

to denote the gradient associated with this connection.

Section 3.4 has essentially already described the Bohmian mechanics on this bundle.

Indeed, the wave function is a (smooth) section of the bundle. This means that ψ(q) ∈

W⊗q for every q ∈ Q. In particular, the value space of the wave function varies from

point to point. The wave function defines a velocity field on Q as it did before. The

5For spin, we shall restrict our discussion to d = 3. We will use the notation Q := N
R

3 and use Q̂
for the universal covering space, Rd,N6= .

6One could always define the bundle structure first by locally labeling the particles in order to
define a coordinate patch, but it is more appealing to use the identification between the points that the
connection provides.
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equations of motion are Bohm’s equation and Pauli’s equation:

dQt

dt
=
~

m
Im

(ψt,∇Qtψt)
(ψt, ψt)

(Qt) for each Qt ∈ Qt, (5.3a)

i~
∂ψt
∂t

=(−
∑
q∈q

~
2

2m
∆q + Vq +

∑
q∈q

µ(Sq ·Bq))ψt. (5.3b)

By ∇Qψ, we mean that we fix all the elements of Q except for Q.7 The symbol dQt
dt

represents the tangent vector of the trajectory in physical space going through Qt at

time t.

5.3.2 Applying AQPQ̂

The covering space version of the Abelian Quantization Principle tells us to lift the

spin bundle to the covering space and look at wave functions satisfying a periodicity

condition. When we pull-back the bundle, by definition elements in the same covering

fiber have the same exact spin space. We shall use the notation W⊗Q̂ for the lifted

spin bundle since the lifted bundle is identical to the bundle formed using the index set

{q1, . . . qN} = q at the point (q1, . . . , qN ) = q̂. We shall also use the notation q ∈ q̂

with the idea of viewing q̂ as a set instead of as an N -tuple.

The class of wave functions for each theory generated by the principle is character-

ized by the periodicity condition

ψ(σ(q̂)) = γσψ(q̂).

Since our space is NR3, we have two possibilities for different classes of wave functions:

bosons (γσ = 1) and fermions (γσ = (−1)σ). We have reached the main conclusion.

It is useful to relate our presentation to the usual story. In the usual story, one

starts with Rd,N6= and one uses the trivial bundle W⊗N with its trivial connection. By

a bosonic wave function, one then means a wave function satisfying

ψ(σq̂) = Rσψ(q̂). (5.4)

7More precisely, ∇ψ is metrically equivalent to the 1-form Dψ acting on TqQ =
⊕
q∈q TqR

3.

As we want to transform a 1-form defined on TQR
3, we restrict Dψ to the subspace

in TqQ that TQR
3 is. Equivalently, we are transforming the 1-form on TQ defined by

Dψ{(
⊕
Q′∈Q,Q′ 6=Q wQ′)⊕ vQ} := Dψ{0⊕ vQ}.
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where Rσ is the permutation of the spin factors related to the permutation of the set

{1, . . . , N} represented by σ. To relate our spin space, W⊗q̂, to the trivial space, W⊗N ,

at the point q̂ = (q1, . . . , qN ), we use the bijection between {1, . . . , N} and {q1, . . . , qN}

which the N -tuple provides.

We would like to point out that our general principle would not apply in the usual

formulation. Indeed, if we used the trivial bundle, and its trivial connection, on the

base space, we first run into the problem that the Hamiltonian is not particularly well-

defined.8 If we then lift the trivial bundle Q×W⊗N to Q̂, we get the trivial flat bundle,

Q̂ ×W⊗N . As implied in Section 5.4.1, sections of Q̂ ×W⊗N which satisfy the trivial

periodicity condition will not be invariant under the evolution. Only the fermionic and

bosonic periodicity conditions are invariant under the Pauli evolution.

5.3.3 Applying AQPH

As for the cut version, we have the same conclusions as before and for the same reason.

For the cuts of NR3 described in Section 5.3.4, we have the boundary condition of −1 for

the fermions. The BV-equivalence maps consist of multiplication by 1 or −1 depending

on the cut and the regions. This approach suggests that the difference between bosons

and fermions is the Hamiltonian. In particular, a wave function, whose support is

simply connected, has the potential to be either bosonic or fermionic depending on

which evolution is chosen. Also note that, just as an example, the other fermionic wave

functions will evolve under the bosonic evolution. But they should instantaneously

cease to be fermionic as well as becoming unsuitable for a Bohmian evolution.

5.3.4 Cutting N
R

3

A rather pleasant exercise is to describe how to cut for Q := N
R

3 so that it becomes

simply connected. For each i, we define κi, i = 1, . . . , 3, to be the set of points q ∈ Q

such that at least two points in q have equal ith components. In other words,

κi := {q ∈ Q|∃q, q̃ ∈ q s.t. qi = q̃i}.

8Note that we do know the Hamiltonian on the covering space; the spin terms in the Hamiltonian
at the points q̂ and σq̂, are related by conjugation with Rσ.
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Note that q ∈ Q̄κi iff q can be ordered by the ith component of its elements. Indeed,

a corresponding fundamental domain in Q̂ is the set {q̂ ∈ Q̂|qi1 < qi2 < · · · < qiN}.

From the definition of a cut, it is reasonably clear that properties 1 and 2 are satisfied;

the main observation is that the paths must preserve the ordering. Thus nontrivial

exchange is forbidden. As for the third property, note that the set in which three

points have the same ith component is a (n − 2)-dimensional submanifold. But if we

restrict the submanifold to a small enough neighborhood of such a point, then we find

that it becomes a union of 3 regular submanifolds, one for each pair. We could also have

a (n− 2)-dimensional part by having two pairs of points with the same ith component

for each pair, but different for the different pairs, e.g. qi1 = qi2 6= qi3 = qi4. Then, in

small neighborhoods, this appears as the union of two submanifolds. If all of the ith

components are equal, then there are
(
N
2

)
submanifolds in the local union. In analogous

fashion, all of the self-intersections are locally the union of regular submanifolds.

5.3.5 Applying AQP∇

Instead of viewing fermionic wave functions as sections on the covering space satisfying

a periodicity condition or as sections of the cut spin bundle satisfying certain virtual

boundary conditions, we will view them as sections of a certain bundle over N
R

3. For

complex-valued functions, we will construct the Fermi line, a one dimensional bundle

endowed with a flat connection such that parallel transporting a vector along an element

σ of the fundamental group is equivalent to multiplying the vector by (−1)σ. As for

higher spins, we construct the appropriate bundle for fermions by tensoring the Fermi

line with the spin bundle.

We start with some terminology. A Bose bundle is a bundle whose sections are

bosonic wave functions; a Fermi bundle’s sections are the fermionic wave functions. For

spin 0, i.e. the scalar case, we shall refer to the Bose bundle as the Bose line and the

Fermi bundle as the Fermi line. The number of particles for the discussion below will

be, as usual, N .

The Bose line is the trivial flat line bundle. That is to say the Bose line is Q× C.

For higher spins, the Bose bundle is the spin bundle, a flat bundle which is inequivalent
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to the trivial flat bundle. Indeed, the holonomy representation on the spin bundle is

the permutation representation.9 We shall describe the Fermi line in a moment; as-

sume that we know what it is. The Fermi bundle for higher spins is then the tensor

product of the Bose bundle with the Fermi line as the principle suggests. By construc-

tion, the holonomy representation of the fermion bundle is the alternating permutation

representation, as it should be.

The question remains how to describe the Fermi line over N
R

3. The Fermi line is a

flat, 1-dimensional bundle such that parallel transport maps w 7→ −w along any path

exchanging two particles and for any w. We shall first do this in the physically relevant

case of three dimensions. For odd dimensions, the configuration space of identical

particles is not orientable. That is to say, the bundle of pseudo-scalars,
∧Nd(T ∗(NR3)),

is nontrivial, i.e. the selection of a non-zero global volume form is impossible. The

holonomy representation of this line bundle is the alternating character. Complexifying

it preserves the holonomy and we end up with the Fermi line bundle.

We now do a different construction which works for all dimensions. Using the par-

ticle number N , form the NN dimensional bundle (CN )⊗Q. Parallel transport along

a path is defined in the obvious way by using the bijection of the index set induced

by the path. The 1-dimensional subbundle of totally antisymmetric elements is the

Fermi line for N particles; symbolically, we could write the Fermi line as
∧Q(CN ).

To say it another way, the subspace of the fiber that we want is the top dimensional

antisymmetric space obtained from C
N and the exterior algebra, i.e. the determinant

line
∧N (CN ) ⊂ (CN )⊗N . To start to understand this bundle, note that the operation

of parallel transport does map this subbundle to itself. Furthermore, since parallel

transport around a loop permutes the factors, it is easy to see that the total antisym-

metry of the vector means the holonomy representation is equivalent to the alternating

character. Explicitly,

∧
q∈q

wq
Γσ7→ ∧

q∈q
wσq = det(Γσ) ∧

q∈q
wq = (−1)σ ∧

q∈q
wq

9By permutation representation, we mean any representation equivalent to the one acting on (Ck)⊗N

which takes any N -element permutation into the operator Rσ which does the same permutation on the
tensor product index set N . The alternating permutation representation shall mean any representation
equivalent to σ 7→ (−1)σRσ.
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where Γσ is the holonomy operator associated to the path σ and each wq is an element

of CN .

5.3.6 Generalization

There is an obvious way to generalize the above story. Let M be a Riemannian manifold

and let it be the space in which the particles move. Furthermore, let E be a cc-Hermitian

bundle over M ; E should be the 1-particle value space. Then to generate a theory of

identical particle motion, we do the same as we did before. Let Q := NM . We define

E⊗Q to have the fiber E⊗q :=
⊗
q∈q Eq̂. We again define parallel transport by using

the induced paths in M generated by a path in Q. The parallel transport of a product

element is the parallel transport of the factors in the product over the paths in physical

space. In the spin bundle, parallel transport of a factor was trivial. We shall refer to

E⊗Q as the position product bundle of E over M and
⊕
QE as the position sum bundle

of E over M .

Applying the Abelian Quantization Principle in any of its forms, we again have

bosons and fermions as before. We may also have additional possibilities depending on

the dimension of M and its fundamental group.

5.4 Beyond the principle?

This section describes what happens if we try to go beyond the Abelian Quantization

Principle. We describe this in all three approaches as each has its own flavor to how the

possibility is rejected. Of course, technically we only need to do this once. Although

we are giving this argument in the context of identical particles with spin, this is really

a discussion about whether the Abelian Quantization Principle is formulated in an

appropriate level of generality.

5.4.1 Beyond AQPQ̂?

The covering space formulation suggests that the wave function on different levels should

differ only by a multiplicative constant. Our motivation was the realization that this
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is an invariant condition guaranteeing that the wave function provides a Bohmian evo-

lution on the base space. Looking at Bohm’s equation, it is clear that if we replace

the constant scalar with a constant unitary matrix, then we again have a projective

Bohmian velocity field. We thus formulate our periodicity condition as

ψ(σq̂) = Γσ(q̂)ψ(q̂) (5.5)

where Γσ is locally constant.10 The condition of invariance under Pauli’s equation is a

very strong condition; whether Γσ is unitary or not, invariance demands that Γσ is a

multiple of the identity. This is what we shall now explain.

Invariance means that if an initial ψ0 satisfies (5.5), then its solution will satisfy

(5.5) for all later times. Let ψt be the solution to Pauli’s equation with initial condition

ψ0 and assume that (5.5) holds for all time. Using Pauli’s equation, we compute

HΓσψt = H(ψt ◦ σ) = i~
∂(ψt ◦ σ)

∂t
= i~

∂(Γσψt)
∂t

= i~Γσ
∂ψt
∂t

= ΓσHψt;

of critical importance to this computation is the easy fact that if ψt is any solution of

Pauli’s equation, then ψt ◦ σ is a solution as well.11 We thus have the fundamental

relation

[H,Γσ]ψt = 0. (5.6)

By local constancy, Γσ commutes with the Laplacian. We are left with

[
∑
q∈q̂

(Sq ·Bq),Γσ]ψ(q̂) = 0. (5.7)

To use this equation effectively, we fix a point, q̂, and parallel transport our objects

from every q̂′ to q̂. Parallel transport preserves (5.7). Since Γσ is parallel, we now have

10Local constancy means that we can obtain Γσ from parallel transporting it along a curve; equiva-
lently, its covariant derivative satisfies

∇Γσ = 0.

Although it makes no sense to ask if it is globally constant since the vector fibers themselves depend
on q̂, it does make sense to ask if Γσ1(q̂) = Γσ1(σ2q̂). This equation does not hold; instead we have
to apply permutations: Γσ1(σ2q̂) = Rσ2Γσ1(q̂)R−1

σ2 where Rσ2 is the appropriate permutation matrix
representing the parallel transport operator for spinors.

11This follows from the fact that composing ψ with σ does not affect the Laplacian and that the spin
terms for our bundle are equal at different points along the same covering fiber. In the standard story,
a permutation in spin space would need to be invoked.
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a family of equations constraining Γσ(q̂). For a generic Hamiltonian, the B field will

vary from point to point and we are led to the conclusion that the commutation relation

holds for all spin terms. Furthermore, if ψ is sufficiently generic, then we would expect

the commutation relations to hold for all spinors in the spin space at q̂. We can then

say that Γσ must commute with the 3N element set
⋃
q∈q̂{Sx

q, Sy
q, Sz

q}; this set is a

set of generators for an irreducible representation.12 Thus, by Schur’s lemma, Γσ must

be a multiple of the identity. Again, by local constancy, the scalar multiple is a global

constant. We have the Bose-Fermi alternative and we find that we failed to go beyond

the principle.

5.4.2 Beyond AQPH?

The cut approach goes in much the same way. The difference is that in the very formu-

lation, we are looking for a domain of self-adjointness. Just being symmetric implies,

roughly speaking, that the boundary conditions need to commute with the Hamilto-

nian. Thus, we immediately have the commutation relation between the representation

of the fundamental group and the spin representation leading again to the fundamental

group’s representation being essentially one-dimensional.

5.4.3 Beyond AQP∇?

As for going beyond AQP∇, we need to ask a different question. Our original question

was modest; we only wanted to find a method for constructing different theories based

on a given bundle. We formulated a principle as to how to do this and we established

that it was equivalent to what we had done in the covering space approach. But we

could also try to find all bundles that are locally equivalent but globally inequivalent.

As an example, we might know that the theory we want has the property that the

12W⊗q is an irreducible representation space of ×q∈q SU(2), the q-indexed group product of SU(2).
This follows because the single-particle spin space, W , is an irreducible representation space of SU(2);
tensor products of representation spaces naturally represent the group product; and, by Proposition 4.14
on page 82 in [17], such product representations are irreducible if the factors themselves are irreducible.
The proof in that text uses the theory of characters of a representation. To avoid confusion, please
note that we are not discussing the natural representation of SU(2) on W⊗q which is a reducible
representation.
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associated bundle E is endowed with a flat connection. Then the question reduces

to characterizing all flat bundles of a given dimension. We shall give the well-known

answer to this question, and then explain how one might exclude these possibilities

based on other constraints. In particular, the presence of the spin structures prevents

us from considering all flat bundles over N
R

3.

We wish to characterize all flat bundles over Q. Each flat bundle over Q corresponds

to a different Bohmian theory; locally each flat bundle is equivalent, but globally these

are inequivalent flat bundles and distinguished by their holonomy representations. If

the flat bundle has a parallel inner product, then the representation is unitary under

that inner product. After taking into account the appropriate equivalence relations,13 it

is a fact that for each unitary representation of π1(Q) acting on W , there is exactly one

flat bundle with a parallel inner product.14 For each flat bundle, we have a Bohmian

theory; it is a standard fact that equivalent flat bundles provide equivalent theories.15

Thus, for flat bundles whose potentials are scalar multiples of the identity, we have a

different theory for each unitary representation of π1(Q).

In the case of identical particles with spin, our potentials are not just scalar multiples

of the identity. We want a bundle which can support the spin terms. Our demand is

that that the spin operators should locally form a parallel set of operators and be

appropriately linked to the physical positions in space. Specifically, we demand that

13Two flat bundles, E and F over Q, are equivalent if there is a smooth diffeomorphism f between
the two bundles such that f(q, ·) is an isomorphism from Eq onto Fq for each q ∈ Q and the pull-back of
the connection on F agrees with the connection on E. Two representations are equivalent if there is an
isomorphism between the vector spaces which induces an isomorphism of the representations; that is to
say, if f : V →W is an isomorphism, σ 7→ Aσ is a representation of the group G on V , and σ 7→ Bσ is a
representation of the group G on W , then f demonstrates the equivalence if and only if fAσf

−1 = Bσ.
It is an easy fact that if the representations formed by the parallel transport operators on E and F
are equivalent, then E and F are equivalent as flat bundles. To see this, simply take the equivalence
at one point, parallel transport it around, and use the representation properties to demonstrate that
this is a consistent procedure, i.e. the parallel transported isomorphism is the same as the original
one. The character of the representation, defined to be the mapping from the group to the trace of its
representative, is in bijective correspondence with the equivalence classes of the representations.

14One way to construct them is to appeal to the covering space. Let σ 7→ Γσ be the corresponding
representation of the covering group. Then define the equivalence relation (q̂, v) ∼ (σq̂,Γσv). The
corresponding bundle and induced parallel transport is the correct flat bundle.

15Using a connection-equivalence bundle map, say Φ : E → F , we may map wave functions to wave
functions and note that since ∇EΦψ = Φ∇Fψ and Φq is unitary, we have the same Bohmian velocities.
As Φ also suitably commutes with the Hamiltonians, we have the same Bohmian evolution.
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for each element q ∈ q ∈ Q, there is an associated spin vector, Sq. As we parallel

transport these operators along a path α in Q, the spin vector associated to q should

be mapped into the spin vector associated with αq(t), the point in physical space at

time t that q is mapped to via α.16 Around a representative of a nontrivial element in

π1(Q, q), the spin vectors are permuted.17 The holonomy operators are responsible for

implementing this permutation. By using Schur’s lemma appropriately, we can argue

that the holonomy representation must either be the permutation representation or

the alternating permutation representation.18 Thus, the only flat bundles capable of

supporting the spin terms are the Bose bundles and the Fermi bundles. The argument

given above is the argument given in [39]. Thus, if we demand flatness and the presence

of spin, we conclude that our principle is the most generic that we can expect.

What if we remove the constraint of flatness? Trying to characterize all bundles

of a certain dimension with a prescribed curvature, is not, to our knowledge, an easy

task. Our general principle allows us to construct new bundles from a given bundle,

but to find all such bundles is an entirely different question. With the spin terms,

we can at least substantially reduce the question. Indeed, we still demand the spin

operators to be parallel and to be permuted upon transporting around any loop. Thus,

along any path, Schur’s lemma tells us that parallel transport along a closed curve is

implemented by scalar multiples of permutation matrices. The permutation depends

only on the homotopy class of the curve while the scalar will generally vary over the

homotopy class. It then seems plausible to say that all bundles with the spin terms may

be formed by tensoring the spin bundle with a line bundle. The question of classification

then reduces to classifying all line bundles over Q.19

16Recall that a path α : [0, 1] → Q is a set of N trajectories in physical space. We denote the path
starting at q by αq : [0, 1]→ R

3.

17This implies that the spin operators are not sections of the endomorphism bundle. Only the set
of spin vectors is globally defined. We could define a local parallel section for each spin operator, but
these cannot be extended globally on Q.

18If we know the action of a matrix on all of the elements of an irreducible representation, then we
know the matrix up to a scalar multiple. Since the action is that of a permutation, then the holonomy
must be of the form of a character tensored with the permutation representation.

19From a discussion with R. Tumulka, it seemed that the key question is whether there are closed, but
not exact 2-forms. This is because the curvature tensor for a line bundle is a closed 2-form. Thus, if all
closed 2-forms are exact, then given a prescribed curvature, there is a 1-form which may be subtracted
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5.5 Below the principle

Just as it is possible in special circumstances to formulate theories that go beyond the

Abelian Quantization Principle, it is also possible to be in a situation in which the

different characters give rise to equivalent theories. We have put this material here

since the example is best understood at this point.

This bundle was suggested by Federico Bonetto in the context of a theory of mixed

bosons and fermions; we discuss this here only in the scalar case. One approach to a

system in which we have m bosons and n fermions is to to choose the configuration

space to be the Cartesian product m
R

3 × n
R

3. The bundle over that space would then

be the ordinary tensor product of the the respective Bose and Fermi lines. Another

possibility is to take the special 3k-forms on N
R

3 which respect the particle identity;

in local coordinates, we have dqi1 ∧ · · · ∧ dqik . Such a 3k-form could be thought to

represent k-fermions and N − k bosons. What happens if we tensor this bundle with

the Fermi line? As one would naively expect, this switches the fermions and bosons,

i.e., it maps the 3k-forms into 3(N − k)-forms. Thus, the bundle of all special forms is

equivalent to itself tensored with the Fermi line. In order for the two Bohmian theories

to be equivalent, we would actually need the Hamiltonian to be the same under the

equivalence; this seems to place some restrictions on the Hamiltonian. The interested

reader can find more details about the interplay of different types of particles and N
R

3

in [34] and Section 5.9.

For a simpler counterexample, take the bundle E to be the direct sum (Whitney

sum) of the Fermi line, F , and the Bose line, B, over NR3. Then the principle suggests

that to find other theories, we should tensor the Fermi line, F , with E to obtain a new

from the connection to achieve a flat connection; since flat connections have been characterized by π1,
this would conclude the argument. But closed 2-forms being exact is implied by the triviality of the
second homotopy class, π2(M). In other words, if all continuous maps of S2 into M are contractible
in the space, then 2-forms are exact. Except for d = 3, π2(Rd,N6= ) seems to be trivial. Indeed, pick two
particles and place a sphere between two of them. This sphere can be contracted iff d ≥ 4; this follows
by viewing one particle as the origin and demanding that the contracting sphere never intersects the
origin. We would suspect that, for d ≥ 4, π2(NR3) is finite and therefore its cohomology is trivial.
Whether or not the exceptional case d = 3 is an exception is not known to us. We conjecture that,
just as anyons arise in two dimensions, in three dimensions we do have such 2-forms and quite possibly
such bundles.
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bundle G. But in fact, we have

G := F ⊗ (F ⊕B) ∼= F ⊗ F ⊕ F ⊗B ∼= B ⊕ F ∼= E.

Assume that we had a potential V =
(
a b
c d

)
acting on E. If one computes, one finds

that Id⊗ V 7→
(
d c
b a

)
under these isomorphisms. As derivatives are unaffected by these

isomorphisms, we shall have equivalent theories iff a = d and b = c.

Note that what happens in these case is the vanishing of the trace of the holonomy

operators of E representing the paths whose holonomy operators in F are non-trivial.

Since the character of a representation determines a representation up to isomorphism

and the character of a tensor product is the product of the characters,20 we have that

G’s holonomy representation is equivalent to E’s holonomy representation. It seems

that if we avoid this kind of degenerate situation, then we will obtain inequivalent

theories.

5.6 Bundle triviality

A natural question to ask about the Bose bundles and Fermi bundles is whether these

bundles are trivial or not. They are certainly not trivial flat bundles. But a bundle can

have a non-trivial flat connection and still be trivial as a bundle, as is the case for the

complex line over the circle. It turns out that some of the bundles are trivial and some

are not. Given that information, it might then be reasonable to suggest that the spin-

statistics relation would be correlated to the triviality of the bundle. More precisely,

the conjecture would be that the Bose bundles for integral spin would be trivial while

the Fermi bundles would be trivial for half-integral spin. This conjecture is false. In

fact, there is no correlation. Here is the table of relations for N = 2, d = 3, spin s:

s = 2l s = 2l + 1
2 s = 2l + 1 s = 2l + 3

2

Bose trivial nontrivial nontrivial trivial

Fermi nontrivial nontrivial trivial trivial

20See [17]. Recall that the character of a representation is the mapping from the group into the
complex numbers defined by taking the trace of the representatives.
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for l ∈ N. For N > 2, the Bose bundle is nontrivial for odd integral spin while the

Fermi bundle is nontrivial for even integral spin. We do not know the triviality or

nontriviality of the other bundles except for the Bose line which is clearly trivial. We

give here a brief outline of the reason for these results. In Appendix D, we give a more

complete account of these results.

We start with some facts about line bundles over N
R
d. First, a flat line bundle

with trivial holonomy is a trivial bundle. To trivialize, simply parallel transport a (1-

element) basis to every point of the manifold. Since the holonomy is trivial, this is

a well-defined operation. Second, if a flat line bundle has non-trivial holonomy, over

N
R
d, then it is non-trivial. As there are only two characters of the fundamental group,

this is a statement directly about the Fermi line. The proof of this assertion lies in the

following idea. The difference between two connections is a 1-form and for both of them

to be flat, the 1-form must be closed. Furthermore, to have a nontrivial holonomy, the

1-form must be non-exact. Since all closed 1-forms on Q are exact, we are done. Thus

the Fermi line is nontrivial. Furthermore, the configuration space’s top form bundle

has the holonomy of the alternating character iff d is odd. This follows by considering

the wedge product of the basis elements and noting that the parallel transport along a

loop transposing two particles involves the exchange of d-pairs of vectors. Thus, NRd

is orientable iff d is even.

A useful tool in establishing the nontriviality of a vector bundle is its determi-

nant line bundle. If E is a vector bundle of dimension l, then its determinant line is

det(E) :=
∧l(E) = (E⊗l)Alt, the totally antisymmetric, 1-dimensional subbundle of the

l-fold tensor product of E with itself. If E is a trivial bundle, then its determinant line

is trivial. The converse fails to hold as the case of the nontrivial tangent bundle to the

(orientable) 2-sphere demonstrates. We also have that the parallel transport operator

on E induces a parallel transport operator on det(E). In fact, for a given path, the

holonomy operator for that path in det(E) is multiplication by the determinant of the

corresponding holonomy operator acting on E. This is related to why it is called the

determinant line bundle. Furthermore, if E is flat, then det(E) is flat. Hence our plan
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is to compute the determinant line bundle of our bundles. This is equivalent to com-

puting the determinant of the matrices in the permutation and alternating permutation

representation.

Given any of the bundles, our candidate permutation matrix will be the one corre-

sponding to an exchange of two particles. As is easy to see,21 we find that the deter-

minant of the matrix for the Bose bundle is −1 raised to the power
(

2s+1
2

)
(2s+ 1)N−2

while the determinant for the matrix for the Fermi bundle is −1 raised to the power

(2s+ 1 +
(

2s+1
2

)
)(2s+ 1)N−2. By computing when the exponents are odd, we arrive at

our claims about the non-triviality.

Our final effort will be to demonstrate the triviality assertions. To do this, we

need to argue that the direct sum of the Fermi line with itself, over 2
R

3, is trivial, i.e.

F ⊕F ' 2
R

3×C2. The following proof was implied to exist in appendix D of [11]. The

idea is to produce a trivialization. We start with writing the covering space as

Q̂ := R
2,3
6= = R

3 × R+ × S2,

i.e. center of mass, distance between the particles, and the direction from particle 1 to

particle 2. To create the base space, we identify antipodal points on S2. To find a basis

for our bundle, it is sufficient to find a global basis of S2×C2 such that both sections of

the basis satisfy the alternating periodicity condition. Once we have such sections, we

then extend them to Q̂ by defining them to be constant in the other coordinates. To

obtain these sections over S2, we parameterize the sphere with spherical coordinates

(θ, φ): 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Then the following smooth, linearly independent

sections

ψ1(θ, φ) =

 cosφ

eiθ sinφ

 ψ2(θ, φ) =

e−iθ sinφ

− cosφ


satisfy

ψi(θ + π, π − φ) = −ψi(θ, φ).

21For N = 2, decompose the tensor product into symmetric and antisymmetric elements. For N > 2,
consider a matrix representing a transposition. Then again decompose it into the symmetric and
antisymmetric parts with respect to those two factors.
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This is all we needed. This comes from considerations in the spin-1
2 representation of

SO(3). Namely, the matrices A(θ, φ) with columns ψ1 and ψ2, represent a rotation

of angle π about the axis specified by (θ, φ). The essential fact is that we have a

double-valued representation, i.e. A(θ + π, π − φ) = −A(θ, φ).

The following works for N = 2. The idea is to decompose each bundle into a sum

of Bose and Fermi lines. We then take pairs of Fermi lines and trivialize them. If there

are an even number of Fermi lines, then we have trivialized the whole bundle as the

sum of trivial bundles is trivial. An odd number implies that it is nontrivial, a fact

we have already established. We start with the Bose bundles. Since we have only two

particles, the bundle is the sum of a symmetric part and an antisymmetric part. The

symmetric subbundle is trivial (a sum of Bose lines), while the antisymmetric part is a

sum of Fermi lines. Thus, the Bose bundle is trivial if and only if the number of Fermi

lines is even i.e., iff
(

2s+1
2

)
, the dimension of the antisymmetric part, is even. As for the

Fermi bundle, its triviality depends upon the parity of 2s + 1 +
(

2s+1
2

)
, the dimension

of the symmetric part, since upon tensoring with a Fermi line, the Fermi lines become

Bose lines and the Bose lines become Fermi lines. The results follow.

5.7 Another viewpoint for identical particles

We have described how a theory about identical particles should be formed in Bohmian

mechanics. In this section, we shall pursue a different, very speculative, idea. The idea

suggests how Bohmian mechanics can choose bosons and fermions even if we start on the

wrong space. Furthermore, it demonstrates the difficulties in satisfying the intuition

that permutation symmetry leads to only two classes of wave functions. It is also

useful in revealing a certain strength of Bohmian mechanics. But we are not suggesting

that this is the appropriate story for identical particles; that story has already been

presented. Unless otherwise stated, we will be discussing complex-valued wave functions

even though spin does not substantially change the discussion. The wave functions will

be functions on RdN and the configurations will be elements of RdN .

We have a system of labelled particles. In this context, a system of identical particles
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requires two things. The first is to define an action of the permutations on the state

of the system. Once one has that, then the particles are identical iff the action of the

permutation group commutes with the evolution of the system. In other words, if At is

the evolution operator for the system, χ is any initial condition, and σ is a permutation,

then we require that σ(At(χ)) = At(σχ).

The second condition is straightforward to understand, but the first condition can be

tricky. The action of a permutation on the particle positions is, of course, to exchange

the positions. One must decide how the other objects in the theory should change. For

this, we have two classes of objects. Roughly, objects considered as laws follow the

particles while state objects follow the positions. As that was a bit vague, let us look

at classical mechanics. In classical mechanics, the state of the system is given by the

position and velocity of the particles. When a permutation acts on the sate, the tangent

vector associated with the given position stays associated with the same position. But

both the position and tangent vector are now associated to a different particle. In

contrast, the law is given by the force which is a function of the state of the system. We

do not redefine the force in order to undo the permutation; rather, we take the state

as it is after the action of the permutation and evaluate the force at that position. We

would therefore generally expect the initial force vectors to have changed when we act

upon the initial state by a permutation. We can then see that the second condition will

be satisfied in classical mechanics iff the force is invariant under permutations, i.e. we

need, say for two particles, that F (qa, q̇a, qb, q̇b) = F (qb, q̇b, qa, q̇a).

How do permutations act in Bohmian mechanics? That is the question which is

central to this section. There are three objects in the theory: Q = (Q1, . . . ,QN ) ∈ RdN ,

ψ, H. The status of Q is clear and permutations act on it by permuting the positions,

i.e. (Q1, . . . ,QN ) 7→ Qσ1, . . . ,QσN . The Hamiltonian, being a law, is unchanged as

an object acting on the wave functions. The question is how ψ should change. The

standard view of Bohmian mechanics, as stated in Section 2.1, treats ψ as part of

the state of the system. Thus, we have the freedom, and the obligation, to have the

permutations act on it. Since ψ generates the velocity field, we want the permutation

action to be such that the velocity vector at q is unchanged when we exchange the
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particles. That is to say, we want vσψ
σ−1i

(qσ1, . . . qσN ) = vψi (q1, . . . qN ). To understand

the formula, note that if k = σ−1i, then qi = qσk implying that the kth particle has

position qi after the action of the permutation; hence, the velocity vector of the kth

particle, after the permutation, should be the same as the velocity vector of the ith

particle before the permutation. As can be readily checked, if σψ := ψ ◦ σ−1, then

the above equality holds. Defining the permutation action on wave functions in this

manner, we see that if H is invariant under permutations, then the system satisfies the

conditions for it to be a system of identical particles. We do not arrive at any constraint

on the wave function. From this viewpoint, the experimental evidence of particles being

either bosons or fermions must be incorporated as an additional postulate and is not a

result of the particles being identical. Succinctly, the problem is that the wave function

changes covariantly under symmetries.22

The remedy of this problem, motivated by other reasons, is to consider the wave

function as part of the law. It is our contention that the wave function should be

thought of as an analog of the Hamiltonian; that is to say, the wave function defines

the law of motion and can be given before the evolution of the particles is considered.23

For details on the wave function as a law, please see [26]. This viewpoint implies

that the velocity field is not a consequence of the dynamics, but rather defines the

dynamics in the same way as the force does in classical mechanics. The only initial

conditions are the initial positions of the particles. Accepting our assertion leads to the

conclusion that the velocity field should be appropriately invariant under permutations

of the configurations. This eventually leads to concluding that we have either bosons

or fermions.

A natural challenge to our invoking “the wave function is a law” argument is why we

22As far as we can tell, this is also a problem in standard quantum mechanics as evidenced by the
symmetrization postulate. In the standard story, the wave function should change in the same way,
resulting in the probability density changing in just the right way so as to be insensitive to a relabelling.

23This is true for isolated Bohmian systems or, more appropriately, for the universal wave function.
For systems that are interacting with their environment, the system’s wave function, defined to be
the composite wave function (system plus environment) evaluated at the actual configuration of the
environment, can evolve in a way different from the Schrödinger evolution. This is the case when a
wave function collapses [25]. Effectively, a subsystem is governed by two complementary evolutions:
the Schrödinger evolution and an evolution based on the environment’s configuration changing.
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would still adhere to the usual policy of changing the wave function under a rotation

or gauge transformation, but not under a permutation symmetry. The answer lies

with the conditional wave function. If we have a wave function governing a system

and its environment, we can write it as a function of two variables; namely, the wave

function is a function of the configuration of the system and the configuration of the

environment: ψ(sys, env). We then define the conditional wave function of the system

to be ψ(·,ENV) where ENV stands for the actual configuration of the environment.

In certain situations, the conditional wave function will satisfy its own Schrödinger’s

equation and give rise to a Bohmian system whose trajectories for the system will agree

with the actual Bohmian trajectories. See [25] for more details about the conditional

wave function.

If we have a fundamental symmetry of the universal wave function, then there

is, in general, no reason to assume that symmetry for a conditional wave function.

For example, consider rotations. If our universal wave function is invariant under

rotations of physical space, then rotating our initial universal configuration produces

an equivalent motion. But now let us consider a smaller system. If we rotate the

system’s configuration, but not the environment’s configuration, then there is no reason

to assume invariance. Invariance only holds when both system and environment are

transformed, not when just one of them is transformed.

Symmetry under exchange of particle positions is quite different. This symmetry

is inherited by conditional wave functions. This is obvious; the exchange symmetries

work for any subcollection of identical particles. Thus, if we believe that the particles

are fundamentally identical, then we may assume this property for all systems. It is

relevant to our earthly domain of physics and it is why our argument in this section

ultimately works.

It should be quite clear that this is a Bohmian argument. In sharp contrast to the

other approaches presented in this chapter, we can see no way of doing this argument

in standard quantum mechanics.
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5.8 Classical Mechanics and identical particles

It is interesting to contrast the Bohmian story of identical particles with that of the

classical story. For identical, classical particles, we would again use the natural config-

uration space. The initial conditions are the positions and velocities of the particles.

The law is specified by an acceleration field on configuration space.

If we demand that the acceleration field comes from a potential, we might expect

the covering space to be relevant. But lifting to Rd,N6= does not achieve any greater

generality. To explain why Rd,N6= is not useful, consider the periodicity condition for the

proposed potential V :

V (σq̂) = V (q̂) + γσ.

This is the general condition that will lead to the same gradient at each level of the

covering fiber. The map σ 7→ γσ forms an additive representation of the fundamental

group. It is impossible to form an additive representation, over the reals, of a finite

group. For example, consider a transposition. Writing down the periodicity conditions

leads to 2γσ = 0. There is only one solution to that equation.

To put it succinctly, all closed 1-forms on N
R
d, d ≥ 3, are exact. In classical

mechanics, the covering space of identical particles seems irrelevant except as a con-

venient setting for analysis. Incidentally, the natural configuration space is useful in

classical mechanics and statistical mechanics. Indeed, it answers the Gibbs paradox of

thermodynamics; see [39] for details.

5.9 Distinguished particles

The question arises as to what the proper description of distinguished particles should

be. The typical viewpoint is that the parameters are attached to the particles. In other

words, there are electrons, protons, etc. with various charges and masses and these

are different types of particles. In a typical approach, one would take the Cartesian

product of the natural configuration spaces for the various particles, possibly removing

coincident points, and tensor the appropriate bundles together to form the bundle whose

sections are the wave functions.
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In classical mechanics, the Cartesian product seems to be the only option. We see

no other way of giving the points different fundamental properties. But in quantum

mechanics, we do have another option, as hinted at by Bell in [9]. The idea is that the

particle differences are all incorporated into the wave function itself. We shall describe

the setup here. See [35] for more discussion.

We start with the scalar wave functions and the usual theory on Rd,N6= . In general, the

velocity field generated by a wave function on Rd,N6= will have no particular symmetry

properties. The simple idea is to symmetrize the probability current as well as the

probabilties and then define the Bohmian velocity from that. We then have a well-

defined velocity field on N
R
d. Furthermore, if the wave function only has support in

one “level” of Rd,N6= , then this velocity field gives the usual motion for distinguished

particles. In particular, the particles will retain their distinctive motions. We also

note that the corresponding equivariant density for this new motion is the symmetrized

density; one could argue that this is the only position density that one has access to.

Indeed, based on the position of particles at a single time, it would be hard, if not

impossible, to distinguish an electron from a proton if they were indeed point particles.

It is only through their paths that we see their differences.

We can write the above theory in a better way. In fact, on N
R
d, we form the

N !-dimensional bundle obtained by summing over the covering fibers. More precisely,

at q ∈ N
R
d, we form the bundle

⊕
ρ−1(q)C. We have in mind that a wave function

ψ̂ on Rd,N6= defines ψ(q) := 1
N ! ⊕q̂∈ρ−1(q) ψ(q̂). Each component satisfies a Schrödinger

equation and the sum over the probability currents leads to the correct symmetrized

Bohmian velocity of ψ̂.

We now give a much more general story about distinguishable particles. Fix K to be

the number of different types of particles; we shall use k to index the different particles.

Let (Ek,∇k,mk,Sk) be the data for particle type k and we take ek to be the dimension

of the fiber. Then the one-particle bundle is E :=
⊕K

k=1Ek with the connection induced

from a direct sum, e.g. ∇(ψ1 ⊕ ψ2) := ∇1ψ1 ⊕∇2ψ2. The Schrödinger Hamiltonian is

defined as (G⊗M +
∑

k Sk)◦D2ψ where M is a diagonal matrix with the masses along

the diagonal. In each component of the sum, it will look like the usual Pauli equation.
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Bohm’s equation is dealt with in the same way, i.e. use G⊗M to make the conversion

from a 1-form to a tangent vector. It is necessary to do this before taking the inner

product.

For many particles, the configuration space will be N
R
d. Let K denote the set

{1, . . .K}. Let Aq/K be the set of partitions of q into K sets. We shall use ν to denote

a partition which may also be viewed as a map ν : q → K. We denote the set of

positions of type k, which is the set ν−1(k), by qνk . The bundle for a theory just about

bosons is E⊗Q. The fiber at q may be written as

E⊗Qq := ⊗q∈qEq ∼=
⊕

ν∈Aq/K

(
⊗
k∈K
{E⊗q

ν
k

k }).

The connection is defined in the same way as the spin bundle’s connection: it is induced

by the set bijections which paths in N
R
d provide. Parallel transport in terms of the

sum over partitions requires taking into consideration that the bijection also maps one

partition to another.

For a theory involving fermions, we must construct the appropriate bundles first.

Given a subset r of the point q ∈ Q, we define the vector space

Fr := ∧
r
C
|r| := (C|r|)⊗rAlt.

We can therefore define
∧i
Q as the bundle whose fiber is the direct sum of the Fr’s

where |r| = i. If we have any path σ in N
R
d which gives a bijection between r and

itself, then we have that parallel transport around that path will be (−1)αr(1)αq\r .

That is to say, it is the sign of the permutation induced on the set r by the bijection

σ. In other words, we have, in a loose sense, i fermions and N − i bosons. As one can

easily see, the subspace of the points in r being fermions. is not invariant whereas the

number of fermions is invariant under the parallel transport. In three dimensions, this

is equivalent to the 3i-form bundle of Section 5.5. The direct sum over i leads to the

bundle of all mixed bosons and fermions; we denote it by
∧
Q.

The situation where the first j of the K type of particles are fermionic and the

other types are bosonic may be easily described using these restricted Fermi lines. The
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appropriate bundle is J and it is defined at a point q to be

Jq :=
⊕

ν∈Aq/K

({
j⊗

k=1

Fqνk ⊗ (Ek)⊗q
ν
k} ⊗ {

K⊗
k=j+1

E
⊗qνk
k }).

Its dimension is ∑
ν∈Aq/K

(
N

l1 · · · lK

)
{
∏
k∈K

elkk } = (
∑
k∈K

ek)N .

The evolution equations are the same as they always have been. Explicitly, we have

dQt

dt
=~Im

(ψt, (GQt ⊗M)⊕⊗ ◦DQtψt)
(ψt, ψt)

(Qt) for each Qt ∈ Qt, (5.8a)

i~
∂ψt
∂t

(q) =− ~
2

2

∑
q∈q
{(Gq ⊗M +

∑
k∈K

Sk,q)⊕⊗ ◦D2
qψt(q)}+ Vqψt(q). (5.8b)

If A is an operator acting on Eq, then by A⊕⊗ we mean an operator defined to be

the the direct sum over ν ∈ Aq/K of the operators defined on the tensor product as A

acting on the qth component and the identity on the other components. We can also

write the evolution equations as

dQt

dt
=

~

(ψt, ψt)

∑
ν∈Aq/K

1
mν(q)

Im(ψνt ,∇Qtψ
ν
t )(Qt) for each Qt ∈ Qt, (5.9a)

i~
∂ψνt
∂t

(q) =− ~
2

2

∑
q∈q
{ 1
mν(q)

∆q + Sν(q) ◦ (Bq)ψνt (q)}+ (Vqψt(q))ν (5.9b)

for each partition ν ∈ Aq/K .
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Chapter 6

Taylor expansions of mappings between manifolds

6.1 Introduction

This chapter is somewhat different from the other chapters. The first half of the chapter

is needed for Chapter 7. The second half is answering a natural question that arose

while exploring the first half.

Let M and N be two smooth manifolds with connections. Let f : M → N be

smooth. In this chapter, we shall define how to expand f in the best polynomial

expansion using the linear structure at hand. A connection provides a notion of a local

linear structure on a manifold. Using this linear structure, one can view f as a map

between open subsets of vector spaces. Thus, we can expand f using Taylor polynomials

to obtain the Taylor expansion of f . But a connection also provides a method for

differentiating objects. The question then arises as to whether using the covariant

derivatives in the usual Taylor formula will provide us with the Taylor expansion of f .

The answer is no, but it does when the range is suitably flat.

Given a manifold M and a connection on M , ∇M , we have a natural identification

between the tangent space of a point p and small neighborhoods about p via the ex-

ponential map. When we wish to view the neighborhood Up ⊂ M as a subset of TpM

using this identification, then we shall refer to Up as a linearized neighborhood ; putting

linear coordinates on the tangent space leads to normal coordinates for our neighbor-

hood. The identification allows us to discuss the linearity of functions. Indeed, let us

assume that we have a map f : M → N and that N carries a connection, ∇N . Let

Up be a linearized neighborhood about p and let Uf(p) be a linearized neighborhood

about f(p). Then we can discuss linear mappings, quadratic mappings, and, in general,

multilinear mappings between the neighborhoods. It therefore makes sense to expand
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f itself into a Taylor series expansion. The expansion is a sum of multilinear functions,

or tensors, evaluated along the diagonal; symbolically we have f(v) ≈
∑
Dn
T ([v]n). We

define the nth Taylor derivative1 to be the tensor Dn
T f . The nth covariant derivative,

Dn
Cf , and Dn

T f are both sections of (T ∗M)n ⊗ f∗(TN), where f∗(TN) is the pullback

of the tangent bundle of N to be explained later. It makes sense to ask whether the

symmetric parts agree. This would imply that using the covariant derivatives in the

formulas from multi-variable calculus would be legitimate. If we have agreement, then

we say that f satisfies covariant normality or is covariantly normal.

The following will be proven:

1. If N is flat, then all smooth mappings into it are covariant normality;

2. If the smooth mapping f maps geodesics to geodesics, then f is covariantly nor-

mal; and

3. Let N = V be a vector bundle carrying a bundle connection ∇V over a base

manifold M carrying the manifold connection ∇M . Then those two connections

induce a manifold connection, ∇N , on N . Using ∇N , all smooth sections of the

vector bundle are covariantly normal.

Results that are about Taylor expansions of sections of a vector bundle are in the

literature, but viewing them as Taylor expansion of mappings between manifolds is not.

Even allowing for this weak connection, this author could find few papers with a similar

flavor to the material in this chapter. An alternative idea to the Taylor expansions for

tensors is the notion of affine extensions. Roughly, an affine extension of a tensor

is defined by choosing normal coordinates and differentiating the coefficients in that

coordinate system. One then assembles new tensors out of this construction. This is

different from what we ultimately do in such contexts in the sense that our basis for

the tensor spaces can differ from the basis that the affine extension concept is based

upon. It was first pursued in the 1920’s and 1930’s by O. Veblen, T. Thomas, and H.

Ruse. More recently, it was discussed in [30] in the context of symplectic manifolds

1This is in honor of the usual Taylor expansions and not in honor of the author.
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with connections. If one is interested in this concept, then that recent paper is the

paper to learn the material from. It contains references to the original works as well.

6.2 Covariant derivatives of mappings between manifolds

We start by discussing the standard notions of the pullback bundle and the pullback

connection. Given a bundle E over N , E π→ N , and a manifold M with a smooth

map f : M → N , then the pullback bundle, denoted by f∗(E), is defined by f∗(E)q :=

Ef(q). It can be shown that this has the appropriate smooth structure. Notice that a

section of E pulls back to a section of f∗(E), but the reverse is only guaranteed if f

is a diffeomorphism. If E has a connection, ∇E , then the pullback connection, ∇fE ,

is defined by demanding that the connection acting on a pulled back section in the

direction X ∈ TM should agree with the connection on E acting on the section in the

direction Df(X); Df : TM → TN is the differential of the map f . Schematically, the

definition demands

{∇fEX [f∗(e)]}p := {∇EDf(X)[e]}f(p) (6.1)

where e is a section of E and f∗(e) is the pull-back of e. By choosing a local frame field

on E and pulling the frame back, one can establish what the connection must be in

these coordinates. One then must show, straightforwardly, that the different coordinate

expressions describe the same object. An informative example is when f maps M into

a single point of N . Then the pullback bundle is a trivial bundle and the pullback

connection is a trivial connection.

Now that we have the general definition of the pullback of a bundle, we can specialize

to the tangent bundles. Connections on the tangent bundles TM and TN of the

manifolds M and N will be denoted by ∇M and ∇N . Note that if M
f→ N is a smooth

map between M and N , then Df ∈ T ∗Q⊗ f∗(TN). The Leibniz (product) rule allows

us to define the tensor product of two connections. Thus, we can differentiate Df to

obtain an element of T ∗Q⊗T ∗Q⊗f∗(TN). Repeating, we can compute the derivatives

of all orders of DF.2 This material is from [28].

2It is useful to point out that this is different then repeatedly taking differentials. Indeed, the second
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The next section discusses the product rule, chain rule, and the abuses of the tensor

world. In section 6.4 we discuss the key observations that makes the entire chapter

doable. We then finally discuss various versions of Taylor expansions of mappings

between manifolds.

6.3 The chain rule

The chain rule for derivatives rests on two defining properties of derivatives: the Leibniz

rule and the commutativity of contractions and derivatives. We first state the main

results of this section and then explain the notations and proofs.

The results of this section are:

Theorem 3 (Usual Chain Rule). Let M F→ N
f→ P be smooth maps between con-

nection carrying manifolds. Let G denote their composition. Then

Dn[G](v1, . . . , vn) = Dn[G](
n
⊗
i=1

vi) =
∑

Z∈Z(n)

D|Z|R [f ]( ⊗
r∈RZ

{D|r|[F ]( ⊗
c∈Cr

vzrc)})

=
n∑
k=1

Dk[f ](
∑

Z∈Z(n,k)

⊗
r∈RZ

{D|r|[F ]( ⊗
c∈Cr

vzrc)}).

Theorem 4 (General Chain Rule). Let W be a vector bundle over M , V a bundle

over N , and X a bundle over P and assume that all the bundles have a connection. Let

M
F→ N

f→ P be smoot maps between the base manifolds. Assume B ∈ Γ{W ⊗ F∗(V)}

and A ∈ Γ{V∗ ⊗ f∗(X )}. Then D[A(B)] = D[A](B,DF ) +A(D[B]).

Those are the two main theorems. We will use the following two defining facts.

Statement 1 (Tensor Input). If A is a multilinear functional acting on V ×W , then A

may be viewed as a linear functional acting on V ⊗W . Furthermore, the input (v, w)

into the multilinear A is the same as v ⊗ w into the linear version of A.

Statement 2 (The Product Rule). If we have connections on the bundles E and F ,

both over M , then we define the tensor product connection on E ⊗ F by demanding

differential is a map between T (TM) and T (TN) whereas the second covariant derivative goes from
TM ⊗ TM to TN . Using principal bundles, it can be show that there is a relation between the two
versions of derivatives.
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the Leibniz rule and commutation with contractions. Specifically, if A ∈ Γ{E} and

B ∈ Γ{F} are any two sections, then

1. Leibniz Rule: ∇X [A⊗B] = ∇X [A]⊗B +A⊗∇X [B]

2. Contraction Commutation: If C(A ⊗ B) indicates any kind of contraction, then

∇X [C(A⊗B)] = C(∇X [A⊗B]).

Diagrams. It is convenient to introduce the notion of a chain rule diagram or cr-

diagram. It is a diagram similar to a Young tableaux, but there are important dif-

ferences. In a cr-diagram, we left justify the diagrams so that the first entries lie in

a column. The number of boxes in a row has no particular relation to the other rows

i.e. the number can increase, decrease, or stay the same as we move from row to row.

Furthermore, it is a numbered diagram. We demand that the entries in the first column

strictly increase as we go down the column and the entries in a row to strictly increase

as we move to the right. Thus, the number in the first box in the first column is 1.

The numbers in a column other than the first column are not constrained to behave in

a certain way. In particular, the numbers in the second column can either increase or

decrease.
Here are several cr-diagrams:

1 2 3 4 5
1
2
3

1 5
2
3 4

1 5
2 4
3

1
2
3 4 5

1 5
2 3 4

.

Here are two objects which are not cr-diagrams:

2 1
3 4 5

2
1 3 4 5

.

We now define terminologies and notations which will be extremely helpful. A cr-

diagram will be denoted by Z. The length of Z, denoted by |Z|, is the number of boxes

in the diagram. The collection of all cr-diagrams will be denoted by Z and the set of

cr-diagrams of length n will be denoted by Z(n). The height of the cr-diagram Z is

the number of rows and it will be denoted by |Z|R. The set of cr-diagrams of length n

and height m, shall be denoted by Z(n,m). The entry in row r and column c will be

denoted by zrc. The length of row r will be denoted by |r|. The set of rows in Z will
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be denoted by RZ . The set of columns in row r will be Cr. The diagram Z = 1 4 7
2 3 5 6

has the following properties: |Z| = 7, |Z|R = 2, z12 = 4. Note that the cr-diagram of

length n and height n is unique and is a single column. Also unique is the single row

diagram which is of length n and height 1.

A product rule diagram (pr-diagram) is a much simpler diagram. Each row must

be strictly increasing, but there are no constraints for the first column. We also need to

allow for rows with no entries. We do that by putting one box for the row and putting

a zero in that entry. We use the same notations as before for the cr-diagram except we

shall denote such objects by PR and the set of product rule diagrams with m rows as

PRm. Notice that the number of rows, which includes empty rows, does not change as

one increases the number of derivatives.

Notations. We shall use [ ] to denote an object which is being differentiated. Hence,

functions should not freely pass through. Parentheses shall be mainly used to indicate

some kind of contraction. The simplest case is A(B) = B(A) when A ∈ E∗ and B ∈ E,

then this is just usual composition. This also defines the kernel of the contraction

operation. Namely,

C(A⊗B) := A(B).

As contractions can be more general and ambiguous, caution and excellent notation is

required. A discussion of what we shall eventually need is in the appendices. For other

uses of parenthetical expressions, we shall use {}.

We shall often employ Dn[A] to denote the nth covariant derivative acting on A ∈ E,

where E is some vector bundle. Note that to define the higher covariant derivatives, we

essentially need a connection on the base space. Namely, D[A] ∈ E⊗T ∗Q and therefore

Dn[A] is defined via the Leibniz rule if we have a connection on the bundle and its base

space. Note that D[A](X) := ∇EX [A] and D[A](B ⊗X) := B(∇EX [A]) = ∇EX [A](B).

Furthermore, Dp[A] will denote the covariant derivative evaluated at p ∈M . It is useful

to remark that D2[A](X ⊗ Y ) 6= ∇Y [∇X [A]] as the left-hand side is a tensor in both X

and Y whereas the right-hand side is only a tensor in Y .

The set of sections of a bundle E shall be denoted by Γ{E}. Recall that a section of
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a bundle is a smooth map from the base space into the bundle such that the projection

map acting on the section is the identity map on the base space.

The tensor product will occur often and the ordering of the elements will be crucial.

Therefore, unless otherwise noted, when we write the tensor product over an ordered

set, we shall mean the tensor product in that order. In other words,

n
⊗
i=1

vi := v1 ⊗ v2 ⊗ · · · ⊗ vn

Comment on tensor input. The fact to note is that the tensor takes over the role of

multilinearity, enabling the function A to be viewed as linear. Notice that once we view

the input as a tensor product, we can use the Leibniz rule on it.

Comment on product rule. The product rule allows us to define the covariant derivative

on the dual bundle since, for A ∈ Γ{E∗} and B ∈ Γ{E}, they must satisfy D[A](B) =

D[A(B)] − A(D[B]). As A(B) should be a function over M , we know its derivative

and, by assumption, the derivative is defined on E. In particular a connection on the

tangent bundle provides a connection on all of the tensor product bundles involving

only the tangent and cotangent bundles of M .

Proof of the general chain rule. Since A is a section of a bundle over N , we can pull it

back to the pull-back bundle over M . Thus,

F∗(A) ∈ F∗(Γ{V∗ ⊗ f∗(X )}) ⊂ Γ{F∗(V)∗ ⊗ (fF )∗(X )}.

Then A(B) may be understood as contracting over the pulled back V bundles. In

particular, we have that ∇MX [A(B)] = ∇MX [F∗(A)](B) + A(∇MX [B]). This is just the

product rule for tensor product bundles. Since ∇MX [F∗(A)] := ∇ND [F ](X)[A], we actually

have our result.

Proof of the usual chain rule. The starting case is the usual well-known chain rule.3

3The method of proof depends on the definition of tangent vector used. Coordinates and the multi-
variable chain rule can always be used. If we use the notion of tangent vectors as equivalence classes
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Our inductive step goes as follows. We assume

Dn[G](
n
⊗
i=1

vi) =
∑

Z∈Z(n)

D|Z|R [f ]( ⊗
r∈RZ

{D|r|[F ]( ⊗
c∈Cr

vzrc)})

Let us take the vi to be vector fields and differentiate the resultant scalar field. The

terms involving the derivatives of the vector field will cancel while the other remaining

terms will be what we are interested in. The calculations follows from the product rule

and general chain rule. We start with what we want to find which is

∇vn+1
[Dn[G](

n
⊗
i=1

vi)] = ∇vn+1
[Dn[G]](

n
⊗
i=1

vi) +Dn[G](∇vn+1
[
n
⊗
i=1

vi])

= Dn+1[G](
n+1
⊗
i=1

vi) +Dn[G](∇vn+1
[
n
⊗
i=1

vi]);

the second term is an extra complication which will also appear in the following:

∇vn+1
[Dn[G](

n
⊗
i=1

vi)] =
∑

Z∈Z(n)

∇vn+1
[D|Z|R [f ]( ⊗

r∈RZ
{D|r|[F ]( ⊗

c∈Cr
vzrc)})]

=
∑

Z∈Z(n)

∇vn+1
[D|Z|R [f ]]( ⊗

r∈RZ
{D|r|[F ]( ⊗

c∈Cr
vzrc)})

+
∑

Z∈Z(n)

D|Z|R [f ](
∑
r̃∈RZ

{ ⊗
r∈RZ ,r 6=r̃

D|r|[F ]( ⊗
c∈Cr

vzrc)}

⊗ ∇vn+1
[D|r̃|[F ]]( ⊗

c∈Cr̃
vzr̃c))

+
∑

Z∈Z(n)

D|Z|R [f ](
∑
r̃∈RZ

{ ⊗
r∈RZ ,r 6=r̃

D|r|[F ]( ⊗
c∈Cr

vzrc)}

⊗D|r̃|[F ]( ⊗
c∈Cr̃
∇vn+1

[vzr̃c ]))

=
∑

Z∈Z(n)

D|Z|R+1[f ]({ ⊗
r∈RZ

D|r|[F ]( ⊗
c∈Cr

vzrc)} ⊗D[F ](vn+1))

+
∑

Z∈Z(n)

D|Z|R [f ](
∑
r̃∈RZ

{ ⊗
r∈RZ ,r 6=r̃

D|r|[F ]( ⊗
c∈Cr

vzrc)}

⊗ ∇vn+1
[D|r̃|[F ]]({ ⊗

c∈Cr̃
vzr̃c} ⊗ vn+1))

+Dn[G](∇vn+1
[
n
⊗
i=1

vi]).

of curves, then D[F ] is defined by taking v = [γ] → [F (γ)] := D[F ](v); it is necessary to check
that this is independent of the representative γ. But then the basic chain rule is simply composition:
[γ]→ [G(γ))] = D[G](v) is the same as [γ]→ [Fγ] = D[F ](v)→ [f(F (γ))] = D[f ](D[F ](v)).
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The first term, in the set of three terms, requires the use of the general chain rule.

That set of terms corresponds to cr-diagrams of length n + 1 obtained from those of

length n by attaching a new row at the bottom; the new row contains exactly one box

whose entry is n + 1. The second set of terms requires the use of the product rule. It

corresponds to modifying the old cr-diagrams by appending a new box to the end of a

row. For every cr-diagram of length n and height l, we obtain l new cr-diagrams with

the same height but with length n + 1 and n + 1 is again the entry in the new box.

The third set of terms is an extraneous set for which the product rule and linearity is

of crucial importance for the manipulation of those terms.

6.4 The primary tools

In this section, we prove that a certain group of 1-forms, associated to a point p, have the

property that the fully symmetrized version of the covariant derivatives of those forms

are zero at the point p. These forms are the coordinate forms in normal coordinates.

We then use them to prove that the fully symmetrized covariant derivatives of any (0, l)

tensor is given by Euclidean differentiation in normal coordinates.

Theorem 5. Let γv be a geodesic. Assume that both ∇v[A(B)] = 0 and ∇v[B] = 0

along γv. Then Dn[A](B, vn) = 0 along γv.

Corollary 1. Let γv be a geodesic. Assume that ∇v[A] = 0 along γv. Then Dn[A](vn)

= 0 along γv.

Corollary 2. Let (M,∇M ) be a smooth manifold with connection. Let (x1, . . . , xm) be

the coordinate functions for normal coordinates centered at p ∈M . Then Dn
p [dxi](vn+1)

= 0.

Corollary 3. Let (M,∇M ) be a smooth manifold with connection. Let (x1, . . . , xm) be

the coordinate functions for normal coordinates centered at p ∈ M . Let ω be a (0, l)

tensor. If we view the coordinates as providing a linear structure, we can compute the

nth Euclidean derivative of ω, D̃n
p [ω]. Then Dn

p [ω](vl+n+1) = D̃n
p [ω](vl+n+1).
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Proof of Theorem 5. It is a simple induction using the product rule. Assume that

Dn−1[A](B, vn−1) = 0 along γv. Notice n = 1 is our assumption. Then

(∇v[Dn−1[A]])(B, vn−1) =∇v[(Dn−1[A](B, vn−1))]

−Dn−1[A](∇v[B], vn−1)−Dn−1[A](B,∇v[vn−1]).

By assumption, the objects being differentiated along the geodesic is zero along the

geodesic; thus, the first two terms vanish. first and second terms are zero. Since, along

a geodesic, ∇v[v] = 0 and vn−1 is the (n− 1)-fold tensor power of v with itself, we have

that the third term is zero by the Leibniz rule. It is the vanishing of the third term

which requires γv to be a geodesic.

Proof of Corollary 1. Since A(Id) = A, we may apply Theorem 5 with B = Id. All we

need to establish is that D[Id] = 0. The quick statement is that this must be true for

consistency’s sake. Indeed,

D[Id(Id)] = D[Id](Id) + Id(D[Id].

Since it is the identity, this says that

D[Id] = 2D[Id]

which immediately implies that it is a zero tensor.4

Proof of Corollary 2. In normal coordinates, the image of v ∈ TpM under the exponen-

tial map expp : TpM → M is labelled v. We also have tv = expp tv = γtv(1) = γv(t),

( t between 0 and 1). In particular,
·
γv(t) is simply v where γv is a geodesic starting

4A coordinate proof would go as follows. Pick a frame field, say {ei}, and its dual frame field {ei}.
Then we have that ei(ej) is a constant function in the neighborhood and therefore its derivative is zero.
Thus, the product rule implies that ∇v[ei](ej) = −ei(∇v[ej ]). Since I = ei ⊗ ei, we have

D[Id](ej , v) =

=
∑
i

{(D[ei](ej , v))⊗ ei + (ei)(ej)⊗ (D[ei](v))}

=
∑
i

{−ei(D[ej ](v))⊗ ei}+ (D[ej ](v))

= −Id(D[ej ](v)) +D[ej ](v) = 0.

Thus we have that the identity tensor always has a zero covariant derivative.



115

at p with
·
γv(0) = v. As

·
γv(t) is constant along γv, it can be extended to a constant

vector field in the normal neighborhood. Thus, dxi(v) is a constant function. We have

∇v[dxi(v)] = 0 and ∇v[v] = 0. Since ∇v[dxi](v) = ∇v[(dxi(v))] + dxi(∇v[v]) = 0, we

are in the situation where Theorem 5 applies. Thus, we have that Dn[dxi](v, vn) = 0

along γv and, in particular, at p.

Warning. Although the parallel transport of v along its geodesic is simply a constant

in these coordinates, in general the other coordinate vector fields will not have this

property on γv. If they did, then this would be a locally trivial connection. Indeed,

if the connection was the Levi-Civita connection for a metric, then, as the metric is

preserved by parallel transport, the metric would be a flat metric.

Proof of Corollary 3. Using coordinates, we have ω := ωi1···indx
i1 · · · dxin where sum-

mation is implied over repeated indices. To compute the derivatives, we use the prod-

uct rule repeatedly. Indeed, we can take the above coordinate expression and rewrite

it as ωi1···in ⊗ dxi1 ⊗ · · · ⊗ dxin . From Corollary 2, we have that when we evalu-

ate Dn[ω](vn+l+1), the terms involving the derivatives of the coordinate forms vanish.

Thus, we are only left with the derivative of the coefficient, which is exactly what the

Euclidean derivative is.

6.5 Taylor expansions of mappings between finite dimensional vector

spaces

In this section, we shall formulate the question properly. We start by recalling the usual

facts about the Taylor expansion in vector spaces which may be found, for example, in

[1]. The nth Taylor function of f , Tnf , is the best n-polynomial approximation to f up

to terms of order o(εn).

This means, precisely, the following. We start with the finite dimensional vector

spaces V , W , and a smooth map f : V → W . Then the Taylor function Tnf at x0
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should be an nth-degree polynomial, i.e.

Tnf ∈ {
n⊕
i=0

(V ∗)⊗i} ⊗W.5

We require that Tnf satisfies

lim
x→x0

‖f(x)− Tnf(⊕ni=0{x− x0}i)‖W
‖x− x0‖nV

= 0 (6.2)

This statement is independent of which norm is chosen since, in finite dimensions, all

norms are equivalent.We shall take x0 to be 0 and write v for the vector x− x0.

We first establish that the symmetric part is unique. Indeed, let A and B be two

polynomials satisfying (6.2). We will be done if we show that for any vector v ∈ V ,

(A−B)(⊕ni=1{v}i) = (A−B)(v ⊕ {v ⊗ v} ⊕ · · · ⊕ {⊗ni=1v}) = 0.

But this is easy. We first note that

lim
v→0

‖(A−B)(v)‖W
‖v‖nV

= 0; (6.3)

this follows by inserting 0 in the form of f − f into the numerator, using the triangle

inequality, and then using (6.2). Let Ai and Bi be the i-linear parts of A and B,

respectively. By replacing v with hv, h ∈ R, we have

0 = lim
h→0

‖
∑n

i=1(Ai −Bi)({hv}i)‖W
‖hv‖nV

= lim
h→0+

‖
∑n

i=1
1

hn−i
(Ai −Bi)(vi)‖W
‖v‖nV

. (6.4)

Thus, ‖(Ai −Bi)(vi)‖W must be zero for every i which implies uniqueness.

We now prove that

Tnf(v) =
n∑
i=0

1
i!
Di

0[f ](v).

All we need is the fundamental theorem of calculus and integration by parts. The

fundamental theorem of calculus is

f(u+ v)− f(u) =
∫ 1

0
Du+tv[f ](v)dt.

5A vector space raised to the 0th-power is defined to be the field itself. Also, polynomials are always
taken to be symmetric objects. That is to say, one mainly wants to evaluate them on the diagonal.
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We now use integration by parts which is the reverse of the product rule. Specifically,

we claim that∫ 1

0

(1− t)i−1

(i− 1)!
Di
u+tv[f ](vi)dt =

1
i!
Di
u[f ](vi) +

∫ 1

0

(1− t)i

i!
Di+1
u+tv[f ](vi+1)dt.

This follows immediately from

0− (− 1
i!
Di
u[f ](vi)) =

∫ 1

0

d

dt
[
−(1− t)i

i!
Di
u+tv[f ](vi)]dt

=
∫ 1

0

(1− t)i−1

(i− 1)!
Di
u+tv[f ](vi)dt

+
∫ 1

0

−(1− t)i

i!
Di+1
u+tv[f ](vi+1)dt.

Since f ’s derivatives are continuous both as operator-valued functions over M , we have

that

‖Dl
q[f ](vl)‖W ≤ Cl‖vl‖V

for q in a small enough neighborhood. This immediately leads to

‖f(x)−
n∑
i=0

1
i!
Di

0[f ](v)‖W = ‖
∫ 1

0

(1− t)n

n!
Dn+1
u+tv[f ](vn+1)dt‖W ≤ Kn+1‖v‖n+1

V

for some constant Kn+1 and v in the appropriate neighborhood of the origin. Thus, we

have our limit.

Having discussed the vector space case, we now formulate the question for manifolds.

If M and N have connections, then there is a canonical identification via the exponential

map between a neighborhood of 0 ∈ TpM and a neighborhood of p ∈ M . The same

is true for N . Thus any mapping f between M and N can be viewed as a mapping

between some neighborhood of 0 ∈ TpM and Tf(p)N . We can then Taylor expand that

map. Since these are vector spaces, their tangent spaces are canonically identifiable

with themselves. Thus, we end up with a polynomial mapping from the tangent space

of M to that of the tangent space of N . The Taylor polynomial of f is the polynomial

between the tangent spaces obtained through the Taylor expansion of f as a mapping

between the two tangent spaces. The ith monomial of the polynomial is indepedent of

n; we shall call this the ith Taylor derivative. We could also construct a polynomial

out of the covariant derivatives of these mappings. Are these polynomials the same?
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That is the question. The answer is that, loosely speaking, they agree when the range

is appropriately flat.

A map f is covariantly normal at p iff its symmetrized covariant derivatives at p

agree with the Taylor derivatives. If f is covariantly normal at all points of M , then f

is covariantly normal.

6.6 Taylor expansions of mappings into flat spaces

In this section we discuss mappings into a flat space. As we shall prove, these maps are

always covariantly normal.

Let (N,∇N ) be a flat cc-manifold. This means that both the torsion and the

curvature of the connection vanishes. In this section, the following standard lemma is

of crucial importance.

Lemma 1. Let (N,∇N ) be a flat cc-manifold and (U, (x1, . . . xn)) be normal coordinates

for U centered at p. Then ∇N [ ∂
∂xi

] = 0 everywhere in U for every i, i.e. the coordinate

vector fields are parallel.

Proof. Let (U, (y1, . . . , yn)) be a coordinate neighborhood such that the coordinate vec-

tor fields are parallel and such that ∂
∂yi
|p = ∂

∂xi
|p. Existence of such a neighborhood

follows from flatness as in the proof of Theorem 7.3 in the text [38]. The claim is that

yi = xi. As the xi’s are normal coordinates, we know, by definition, that in these co-

ordinates γ(t) := t
∑n

i=1 aix
i is a geodesic such that γ(0) = 0(= p) and γ̇(0) = ai

∂
∂xi
|p.

But if we define φ(t) := t
∑n

i=1 aiy
i, then we claim that this is a geodesic. Once we

establish that claim, then we are done by uniqueness results since γ and φ do have the

same initial conditions; hence, the coordinates are the same (the point represented by∑
aix

i is the same, through the geodesics, as
∑
aiy

i).

We now need to establish the φ(t) is a geodesic. We thus need to show that

∇N
φ̇

[φ̇] = 0. We know that φ̇(t) =
∑n

i=1 ai
∂
∂yi
|φ(t). Thus the vector field along the

curve agrees with the vector field
∑n

i=1 ai
∂
∂yi

. And therefore, by definition, ∇N
φ̇

[φ̇] =

∇N∑n
i=1 ai

∂

∂yi

[
∑n

i=1 ai
∂
∂yi

]. But this is zero as all of the ∂
∂yi

are parallel and the ai are

constants.
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The above proof was rather indirect. Indeed, in the proofs of the existence of the

y coordinates, all of them that the author has seen requires the construction of a new

coordinate system out of a given coordinate system. Even more galling, in [38], one

starts with some coordinate system; that author suggests that normal coordinates is a

possible choice. Then the proof constructs that coordinate system using theorems about

integrability of systems. But, as we just showed, this constructs normal coordinates.

Thus, one uses an elaborate machinery to construct coordinates that one already has.

With the lemma, we may now prove the following theorem.

Theorem 6. Let f be a map from (M,∇M ) into the flat cc-manifold (N,∇N ). Then f

is covariantly normal.

Proof. Choose normal coordinate neighborhoods about p ∈ M and f(p) ∈ N . Using

these coordinates, we write Df = df j∂j where df j is a (0, 1) tensor and ∂j is the pull-

back of the coordinate fields on N . By repeatedly applying the product rule, we have,

for all l,

Dl[f ] = Dl−1[df j ]∂j +
∑

Z∈PR2(l−1)
r1 6=l−1

Dr1 [df j ]⊗Dr2 [∂j ]

where the derivative on the coordinate vector fields on N is the pull-back derivative. In

any event, the terms in the sum vanish by applying Lemma 1. Applying Corollary 3,

we find that we have the Euclidean derivatives of Df when we evaluate the derivative

acting on vn at p. By viewing the coordinates as providing the linear structure, we have

that this is also what appears in the Taylor formula. Thus, f is covariantly normal.

6.7 The exponential map and its derivatives

Let M be a cc-manifold. Recall that the exponential map at p ∈M maps the tangent

space at p into M , i.e. expp : TpM → M . It is actually restricted to a neighborhood

about the origin such that its restriction is a diffeomorphism. Its inverse, exp−1
p , is a

map from an open subset of M into a flat space.

Theorem 7. Let M be a cc-manifold. Then for every p ∈M , we have, for n > 1, that

Dn
p [exp−1

p ](vn) = 0 and Dn
0 [expp ](vn) = 0. For n = 1, the maps are essentially the
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identity.

Proof. By definition, exp−1
p : M → TpM is defined such that, when expressed in normal

coordinates, it is the identity map. By Theorem 6, we have that Dp[exp−1
p (p)](v) = v

and, for n > 1, Dn
p [exp−1

p (p)](vn) = 0. It is immediate that Dp[expp (0)](v) = v.

To obtain the n > 1 result for expp , we shall use the chain rule. We start with

the defining relation expp (exp−1
p (q)) = q. Thus, Dn[(expp exp−1

p )] = Dn[Id] = 0. We

expand using the chain rule. We end up with

0 = Dn
0 [(expp (exp−1

p ))](vn) =
n∑
k=1

Dk[expp ](
∑

Z∈Z(n,k)

⊗
r∈RZ

D|r|[exp−1
p ](v|r|)).

If |r| > 1, then D|r|[exp−1
p ](v|r|) = 0 as we just established. Just as importantly, if

|r| = 1, then D|r|[exp−1
p ](v|r|) = v. The only cr-diagram to survive is the one such that

each row has exactly one column. We therefore find that the only term we have left is

Dn[(expp exp−1
p )](vn) which therefore must be zero.

To put it succinctly, the symmetric part of the higher derivatives of the exponential

map vanish at the point whose tangent space is being exponentiated.

Although we do not need the following, it may be useful to remark that the an-

tisymmetric part of the second derivative of the exponential map is the torsion. The

third derivative decomposes into the symmetric part, the derivative of the torsion, and

the curvature tensor. Both facts can be seen by writing the map in coordinates and

looking at the appropriate symmetry types. We should also mention that if the space

is flat, all the derivatives of the exponential map vanish everywhere. As before, it is

not clear how to prove this statement directly.

6.8 Geodesic submanifolds

We need one more ingredient before we can give much broader sufficient conditions for

covariant normality. In this section, we discuss submanifolds that have a connection on

them which agree with the ambient manifold’s connection. It is rare for a submanifold

to have this property. For example, the sphere in R3 does not have this property. For

a Riemannian manifold, submanifolds inherit a metric and a connection although the
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inherited connection may be quite different as is the case for the sphere as the flat

metric in R3 leads to a curved metric on the sphere.

For the rest of this section, let M be a cc-manifold.

Definition 1. A geodesic submanifold Q of a cc-manifold M is a submanifold which

carries a connection that agrees with that of M . In other words, if v ∈ Γ{TQ} and

X ∈ TpQ, then ∇QX [v] = ∇MX [v] ∈ TpQ.

This notion is explained in [48] under the name of totally geodesic submanifold and

in the context of semi-Riemannian manifolds. At the heart of the definition is the idea

that if ∇Mx [v] ∈ TpQ for every v ∈ TQ, then the connection on Q making it into a

geodesic submanifold is just the restriction. In contrast, if the connection on M does

not preserve the tangent space of Q in the above sense, then one could try to fix this

up by using a projection operator onto the tangent space of Q. But, of course, there is

a choice of such projections; a metric does provide such a choice.

Theorem 8. Q is a geodesic submanifold iff given any curve γ in Q, parallel transport

along γ using M ’s connection is a map from Tγ(0)Q into Tγ(t)Q.

Proof. This is almost immediate. If Q is geodesic, then the defining equations for

parallel transport in M along γ are exactly the same as parallel transport in Q along

γ. Thus, the solutions are the same. As for the other direction, since the covariant

derivative may be defined by the difference quotient using parallel transport, we see

that Q is geodesic.

Theorem 9. If Q is a geodesic submanifold, then

1. for every v ∈ TpQ, the geodesic in γv in M with initial tangent vector v is con-

tained in Q, at least for a short while;

2. Q can be recovered locally by the exponentiation of neighborhoods in its tangent

spaces.

Proof. The tangent vector field of a curve in Q is contained in its tangent space. By

looking at what the acceleration of a curve is, it is clear that both M and Q give the
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same acceleration. Thus, we define the geodesics using the connection on Q and then

note that these are geodesics under M ’s connection. The exponentiation statement

follows immediately from the geodesic result.

Definition 2. Let p ∈ M . Then a flat subspace of TpM is a subspace Vp such that

Dn[expp ] vanishes on V ⊗np .

Definition 3. A flat submanifold is a geodesic submanifold whose tangent spaces are

flat.

We mention a few examples. All 1-dimensional subspaces are flat. A geodesic is

a geodesic submanifold which is flat. M is flat iff every tangent space to M is flat.

This is the remark we made at the end of the previous section. For vector bundles

as manifolds, as we shall explain later, the vertical fiber direct summed with a 1-

dimensional horizontal fiber is a flat subspace. This corresponds to the flat submanifold

of a geodesic on the base space coupled with the fiber above its points.

Lemma 2. If Q is a geodesic submanifold such that the curvature and torsion of the

induced connection vanishes everywhere, then Q is a flat submanifold.

Proof. This follows by regarding Q as a manifold. Hence any tangent space of Q is

flat.

Conceptually, one way to establish that a subspace Vp is flat is to exponentiate a

neighborhood about 0 and ask whether it is a flat submanifold. If it is, then Vp is flat.

Note that the exponential image need not even be a geodesic submanifold. How well

this captures the picture of a flat subspace is not known to the author.

We conclude with a reasonable lemma which we shall use in the next section.

Lemma 3. If γ is a curve in a geodesic submanifold Q, then all of its derivatives are

contained in the tangent bundle of Q.

Proof. By definition, the nth derivative of γ is ∇γ̇ · · ·∇γ̇ γ̇. Since this is the connection

evaluated on sections of TQ, we have, by assumption of Q being a geodesic submanifold,

that it is contained in the tangent space of Q.
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6.9 Covariant normality

We may now formulate the positive results of covariant normality.

Lemma 4. Let M , N be cc-manifolds and f be a smooth map from M into N . Then f is

covariantly normal at p if, for each v ∈ TpM , the subspace V (f, v) := span{Dn
p [f ](vn)}

is a flat subspace of Tf(p)N .

Proof. Let f̃ : TpM → Tf(p)N be the following map induced on the tangent spaces

using the exponential maps and f :

f̃(v) := exp−1
f(p) (f(expp v)).

Thus, f(q) = expf(p) (f̃(exp−1
p q)). Essentially by definition, Dn[f̃ ] are the Taylor

derivatives. Furthermore, we also know that Dn
0 [expf(p) (f̃)](vn) = Dn

p [f ](vn) since

Dn[expf(p) (f̃)](vn) =Dn[f(expp v)](vn)

=
∑

Z∈Z(n)

D|Z|R [f ]( ⊗
r∈RZ

D|r|[expp ](v|r|))

=Dn[f ]({D[expp ](v)}n) = Dn[f ](vn)

where the vanishing of the terms is due to applying Theorem 7. We therefore only need

to compute the derivatives of expf(p) (f̃). We need to show that

Dn[expf(p) (f̃)](vn) = Dn[f̃ ](vn).

We again use the chain rule. In particular, we have that

Dn[expf(p) (f̃)](vn) =
∑

Z∈Z(n)

D|Z|R [expf(p) ]( ⊗
r∈RZ

D|r|[f̃ ](v|r|))

=D[expf(p) ](Dn[f̃ ](vn))

+
n∑
i=2

Di[expf(p) ](
∑

Z∈Z(n,i)

⊗
r∈RZ

D|r|[f̃ ](v|r|))

Since D[expf(p) ] = Id, the first term is what we want. Thus, the sum must vanish

in order to obtain the result. In general, this will not happen as the input into the

derivatives of the exponential map are not symmetric. However, by the hypothesis,

the derivatives Di[f̃ ](vi) are all elements of the flat subspace V (f, v). Thus, as the
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nth derivative of the exponential map vanishes on V (f, v)⊗n, we have that the sum

vanishes.

Lemma 5. Fix p ∈ M . Assume that for every geodesic γ in M starting at p, there is

a flat submanifold Qγ of N such that f maps the image of γ into Qγ, at least for some

interval about t = 0. Then f is covariantly normal at p.

Proof. Let v ∈ TpM be given and γv be the unique geodesic corresponding to v. Let Vv

be the vector space at p tangent to the flat submanifold Qγv which contains the image

of γv. Note Vv is a flat subspace implying that all we need to establish is that, for each

n, Dn[f ](vn) is an element of V . Note that f(γv) is a curve in a flat submanifold. Thus

its derivatives, of all orders, are elements of Vv i.e. dn

dtn [f(γv)] ∈ Vv. This follows from

Lemma 3. We also have

dnf(γv)
dtn

=
∑

Z∈Z(n)

D|Z|R [f ]( ⊗
r∈RZ

D|r|[γv](
∂

∂t

|r|
))

= Dn[f ](γ̇vn)

as the higher derivatives of a geodesic vanish. Since Vv is a flat subspace and v was

arbitrary, the lemma applies and we have covariant normality of f .

Theorem 10. Assume that for every geodesic γ in M , there is a flat submanifold Qγ

of N such that f maps the image of γ into Qγ. Then f is covariantly normal.

Proof. Apply the lemma at every point p in the manifold.

Corollary 4. If N is flat, then all maps f : M → N are covariantly normal.

Proof. This was actually deduced before and is actually used in the theorem. Never-

theless, as a means to unification, it is convenient to note that this follows immediately

from the theorem.

Corollary 5. If N = E is a vector bundle over M and f is a section, then f is

covariantly normal.
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Proof. The proof is delayed until the next section. The main insight is that the flat

submanifold that the geodesic γ is mapped into is the submanifold consisting of the

fiber over γ.

Corollary 6. If f maps geodesics into geodesics, then f is covariantly normal.

Proof. A geodesic is a flat submanifold and therefore this is an immediate application

of the theorem.

Corollary 7. Let f : M → N . Assume that for every p ∈M and v ∈ TpM , f satisfies

D2
p[f ](v2) = α2(v)Dp[f ](v) for some α2 : TpM → R. Then f is covariantly normal.

Proof. This will follow immediately from Lemma 4, where the subspace will be 1-

dimensional and therefore flat. We shall show that Dn[f ](vn) = αn(vn−1)D[f ](v).

We shall use induction. Fix p ∈M and vp ∈ TpM . Extend vp to a vector field whose

covariant derivative vanishes at p; this can be done by parallel transporting along the

geodesics originating at p. We start with Dn+1[f ](vn+1) := ∇v[Dn[f ]](vn). By using

the product rule, we find

∇v[Dn[f ]](vn) = ∇v[Dn[f ]vn]−Dn[f ]∇v[vn]

= ∇v[αn(vn−1)D[f ](v)]− 0

= D[αn](vn−1, v)D[f ](v) + 0 + αn(vn−1)D2[f ](v, v) + 0

= (D[αn](vn−1, v) + αn(vn−1)α2(v))D[f ](v)

:= αn+1(vn)D[f ](v).

This is all we needed to show. Incidentally, the α’s are multilinear functionals.

We now show that Corollary 6 and Corollary 7 actually describe the same kind of

map.

Lemma 6. [28] A map f : M → N satisfies D2[f ]([v]2) = α2(v)D[f ](v) if and only if f

maps geodesics of M into geodesics on N. Furthermore, α2 is identically zero everywhere

if and only if the mapping preserves parametrizations.
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Proof. The proof is just the chain rule. Let γv be a geodesic on M such that γv(0) = p

and
·
γv(0) = v. Then define φ to be the curve on N which is the image of γv. By the

chain rule, we have

φ̈ = D2[f ](γ̇v, γ̇v) +D[f ](γ̈v).

Since γv is a geodesic, the second term vanishes. The first term vanishes iff the symmet-

ric part of the second covariant derivative vanishes. For the full statement, one has to

understand that a curve is a reparametrization of a geodesic iff its acceleration vector

is a multiple of its tangent vector. More precisely, if φ̈(t) = α(t)φ̇(t), then there is a

function g : R → R such that φ(h(s)) is a geodesic and conversely. The proof follows

by differentiating using the chain rule to arrive at

φ̈(h) = ḣ2φ̈(h) + ḧφ̇(h).

The only way to have that vanish, without g being a constant, is for φ̈ to be a multiple

of φ̇ and, furthermore, g needs to satisfy ḧ = −ḣ2α(t), ḣ(0) = 1, h(0) = 0. Assuming

that α is differentiable, we do have local existence of the solution. That is all we needed

to claim that the symmetric part of the second derivative had to be a multiple of the

first derivative.

6.10 The failure of covariant normality

Having established certain situations in which we have covariant normality, it is rather

important to investigate situations in which we do not have covariant normality which

we shall call covariant abnormality. We shall content ourselves with showing that there

are manifolds and maps between those manifolds which are not covariantly normal.

When one looks at what needs to vanish in order to have covariant normality, one gets

the feeling that a covariant abnormality should be the generic case. Unfortunately, it

becomes quite complicated to take a brute force approach as there are many terms

that cancel and/or are immediately zero. Nevertheless, I would conjecture that given

a manifold map f : M → N , if there exists a tangent vector v ∈ TpM such that the

span of {Dn[f ](v)} is not a flat subspace, then f is covariantly abnormal at p. This is

a conjecture with no evidence, but it seems a natural guess.
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To establish what we want, we shall use normal coordinates. Let f : M → N

be a map between cc-manifolds. Let p ∈ M and take a neighborhood about p small

enough so that it can be identified with the tangent space at p. Take a basis {∂i} of the

tangent space leading to a coordinatization of the neighborhood in M . We shall use

the summation convention of summing over repeated indices and shall omit summation

symbols. Then the coordinate representation of f is f =: f i∂i. Then the first four

covariant derivatives of f expressed in this coordinate system and evaluated on a given

vector v, are

D[f ](v) =D[f i](v)∂i

D2[f ](v2) =D2[f i](v2)∂i +D[f i](v)D[∂i](D[f ](v))

D3[f ](v3) =D3[f i](v3)∂i + 2D2[f i](v2)D[∂i](D[f ](v))

+D[f i](v)D[∂i](D2[f ](v2)) +D[f i](v)D2[∂i]({D[f ](v)}2)

D4[f ](v4) =D4[f i](v4)∂i + 3D3[f i](v3)D[∂i](D[f ](v))

+ 3D2[f i](v2)D[∂i](D2[f ](v2))

+ 3D2[f i](v2)D2[∂i](D[f ](v)⊗D[f ](v))

+D[f i](v)D2[∂i](2D2[f ](v2)⊗D[f ](v) +D[f ](v)⊗D2[f ](v2))

+D[f i](v)D[∂i](D3[f ](v3)) +D[f i](v)D3[∂i]({D[f ](v)}3)

In order to have covariant normality, we need all of the terms to vanish except the first

term, i.e. the only term that should survive is what one would have from Euclidean

differentiation in this coordinate system.

In order to clean this up a bit, we shall assume that, at p, D[f ](v) =: ∂1 and
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D2[f ](v2) =: ∂2.6 Then the above equations become

Dp[f ](v) =∂1 (6.5a)

D2
p[f ](v2) =∂2 (6.5b)

D3
p[f ](v3) =D3

p[f
i](v3)∂i + 2Dp[∂2](∂1)

+Dp[∂1](∂2) +D2
p[∂1](∂2

2)
(6.5c)

D4
p[f ](v4) =D4

p[f
i](v4)∂i + 3D3

p[f
i](v3)D[∂i](∂1)

+ 3Dp[∂2](∂2) + 3D2
p[∂2](∂2

1)

+D2
p[∂1](2∂2 ⊗ ∂1 + ∂1 ⊗ ∂2)

+Dp[∂1](D3
p[f ](v3)) +D3

p[∂1]({∂1}3)

(6.5d)

Please note that since Dp[∂1](∂1) = 0 at p, we have that (6.5b) implies

D2
p[f

i](v2) =


0 if i 6= 2

1 if i = 2
.

Furthermore, we have that Dn
p [w](wn) = 0 for any vector field w which is a sum of

the coordinate vector fields with constant coefficients. This is what normal coordinates

accomplish. Taking this into account in the above expressions, we are left with

D3
p[f ](v3) =D3

p[f
i](v3)∂i

+Dp[∂2](∂1) +D2
p[∂1](∂2

2)
(6.6a)

D4
p[f ](v4) =D4

p[f
i](v4)∂i + 3D3

p[f
i](v3)D[∂i](∂1)

+ 3D2
p[∂2](∂2

1) +D2
p[∂1](∂2 ⊗ ∂1)

+Dp[∂1](D3
p[f ](v3))

(6.6b)

From this point on, we leave generalities. We shall choose f to have the properties

that we wish it to have. Our goal is to establish that there exists a map which is not

covariantly normal. At some point, we shall also make a further assumption on the

manifold, but that has not come yet. The argument is consideration of certain cases;

6The only loss of generality is assuming that D2[f ](v2) is not a multiple of D[f ](v). If we cannot find
a point p and a vector v ∈ TpM which satisfies this assumption, then the map is, in fact, covariantly
normal.
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this is a bit distasteful and may largely be the result of the author’s ignorance as to

what constraints are actually placed upon the derivatives of these objects. Nevertheless,

whatever the facts are, we shall be successful in establishing that which we have claimed.

We first show that if torsion does not vanish, then we can choose f such that it is

covariantly abnormal. In normal coordinates, we have that τ(x, y) = 2D[x](y) where x

and y are sums of the coordinate vector fields (constant coefficients), and the equality is

only up to a sign.7 Strangely, the most efficient analysis of the cases involves focussing

on the fourth derivative and assuming that the second covariant derivative vanishes

at p when evaluated at v. When one makes this assumption, then the third covariant

derivative is the coordinate derivative. The fourth derivative reduces to

D4
p[f ](v4) = D4

p[f
i](v4)∂i + 3D[∂3](∂1) +Dp[∂1](∂3)

where ∂3 := D3[f ](v3). After applying the vanishing of symmetric expressions, we have

D4
p[f ](v4) = D4

p[f
i](v4)∂i + 2D[∂3](∂1)

Choosing Dp[f ](v) = ∂1 and D3
p[f ](v3)∂3 to be such that the torsion acting on them

does not vanish, we see that the fourth covariant derivative is not the fourth coordinate

derivative. Hence f is not covariantly normal. Note that the span of the covariant

derivatives is not a flat subspace of the tangent space.

If torsion does vanish, then the third covariant derivative will be the coordinate

derivative if and only if D2
p[∂1](∂2

2) = 0. I do not know if this vanishes or not. If it

does not, then we are done. If it does vanish, then we must go to the fourth derivative.

For the fourth derivatve to be the coordinate derivative, we find, after taking into

account the terms we have assumed to vanish, that we need D2
p[∂1](∂2 ⊗ ∂1) = 0. Due

to the symmetries already discussed, this is the curvature operator applied to those

vectors. Although such an expression could vanish, if we assume that N is a curved,

two dimensional manifold, then this cannot vanish.

7The ingredients to establish this are: τ(x, y) := D[x](y) − D[y](x) + [x, y]; the Lie bracket of
coordinate vector fields vanish; and normal coordinates imply that the fully symmetric expression
for covariant derivatives of the coordinate vector fields vanish which in turn implies that D[x](y) =
−D[y](x).



130

As an example, take the sphere and take a curve on the sphere. Then its acceleration

in normal coordinates is the covariant acceleration. But the higher covariant derivatives

of the curve will not, in general, match the coordinate derivatives. In particular, either

the third or fourth derivative will differ if the acceleration is not zero. Thus, we have a

map which is not covariantly normal.

As I said in the beginning, I expect that much stronger statements can be made,

but I do not know how to prove such assertions.

6.11 Vector bundles as manifolds

We now explain why sections of a bundle are covariantly normal. The first item to

explain is how a connection on a vector bundle and the base space give a connection

on the vector bundle as a manifold. Once we have that, then we can view a section as

a map from the base manifold into the bundle manifold and use linear approximations

induced by the normal coordinates.

We start by recalling the standard fact that on a vector bundle, there are three

equivalent notions of a connection. The first is that of covariant differentiation and

the second is that of parallel transport. These we have used before. The new one

that we need is that a connection is a choice of horizontal spaces, as we shall now

explain. A reference for this is Addendum 3 of Chapter 8 in [55]. Let the vector bundle

be B := (E, π,M, V ) where E is the total space and it is a manifold; M is the base

space; π : E → M is the projection map; and V is the fiber, i.e. for every p, π−1(p) is

isomorphic to V . For a vector bundle, we also have the (smooth) multiplication map:

for every α ∈ R, we have α̃ : E → E defined by (p, v) 7→ (p, αv). For each α 6= 0, this

mapping is an automorphism, i.e. a diffeomorphism of E which preserves the bundle

structures.

Fix a point e ∈ E and define p := π(e). Then the map Deπ : TeE → TpM is a

map between two linear spaces and thus it has a kernel. We define the vertical space

at e, Ve, to be the kernel. It is natural to try to decompose each tangent space into the

direct sum TeE = Ve⊕He where He should be the horizontal space at e. We note that
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any complementary space of Ve is isomorphic to TpM under Deπ. The problem is that

we have no canonical way of finding a complementary subspace to the vertical space.

A connection is the assignment of a horizontal space for each point. More specifically,

a distributional connection H in E is a C∞ distribution such that TeE = He ⊕ Ve and

that Deα̃(He) = Hα̃(e) for every point e ∈ E and non-zero α ∈ R. As for notation,

if X ∈ TeE, then we define h̃X ∈ He and ṽX ∈ Ve to be the horizontal and vertical

projections of X, respectively; thus, X = h̃X + ṽX . By using the isomorphism Deπ, we

can view h̃X as a tangent vector. We shall generally do this and write hX for that.

For vector bundles, as opposed to more general fiber bundles, we are able to abuse

the v term as well. Indeed, Vp := π−1(p) is a vector space which is also a submanifold of

E. At the point e := (p, v) ∈ E, the tangent space of the fiber is Ve. But we also know

that a vector space is canonically identifiable with its tangent space. Let Fe : Ve → Vp

be this canonical isomorphism. We shall use the notation vX for Fe(ṽX).

Having setup the basic notations and definitions, we are in a position to sketch the

equivalence of the connections.

Theorem 11. The following notions are equivalent:

1. A connection as covariant derivative (∇ : TpM × Γ{B} → Γ{B}) ;

2. A connection as parallel transport (Pγt : Vγ0 → Vγt);

3. A connection as a distribution of horizontal spaces (e 7→ He).

Sketch of proof. We shall only highlight what the source of the relation is; the details

may be found in [55].

(1⇒ 2) Given a curve γ and a vector v to be parallel transported, the following ODE,

for the function vt ∈ Vγt , defines the parallel transport operator: v̇t = 0; roughly

written this means ∇γ̇t [v(γt)] = 0.

(2⇒ 1) Given v ∈ Γ{B} and a tangent vector y ∈ TpM , let γ be a curve through p

whose tangent vector at p is y. Then the covariant derivative is defined to be

limt→0
1
t (P

−1
γt v(γt)− v0).
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(1⇒ 3) Let (p, v) := e ∈ E and σ ∈ Γ{B} such that σ(p) = v and ∇y[σ](p) = 0 for

all y ∈ TpM . This can be done (at least locally) by parallel transporting v

along the geodesics emanating from p. Then He is the image of TpM under

Dσ : TpM → TeE.

(3⇒ 1) Given a tangent vector y ∈ TpM and a section σ ∈ Γ{B}, then D[σ](y) = ṽe+ h̃e;

we need to have chosen the horizontal space in order to define ṽe.8 Thus, the

covariant derivative is ve, the canonical isomorphic image of ṽe.

With this information, it is relatively straightforward to setup a manifold connection

on E. We shall do this by describing how to parallel transport tangent vectors. Let γ̃

be a curve in E going from the point e0 to e1. Define γ := π(γ̃). This is a curve in

M (although it may only be piecewise smooth, i.e. its tangent vector may vanish). Let

X ∈ Te0E be the tangent vector we wish to parallel transport. Let X = h̃X + ṽX , the

direct sum decomposition of X. Of course, we now use the isomorphisms to obtain hX

and vX . We parallel transport those objects along γ. We do this piecewise. We need

both connections in this step. Once we have the transported objects at e, we use the

isomorphisms to return to a tangent vector of E. Schematically, we have

X
He0⊕Ve07−→ h̃X + ṽX

De0π,Fe07−→ (hX , vX)
γ7→ (g := PMγ hX , w := PBγ vx)7→g̃ + w̃ ∈ Te1E.

One can easily verify linearity, smoothness, invertibility, etc., of this operation which

we define to be the parallel transport operator PEγ .

What are the geodesics of E? The short answer is that these are the parallel

transport of the bundle’s vectors along the geodesics of M .

Lemma 7. Let e = (p, z) ∈ E, X ∈ TeE and γ the geodesic in M with tangent vector

hX . Then the curve defined by α(t) = Pp,γ(t)(tvX + z) is a geodesic starting at e whose

initial tangent vector is X.

8Only if h̃e = 0 would this be canonical; this, however, never occurs for a section as p is what varies.
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Proof. We shall use the following coordinates. Let U be a neighborhood in M centered

at p and use normal coordinates. Parallel transport Vp along the geodesics emanating

from p. This will locally trivialize the bundle. With these coordinates, we have α(t) =

(thX , tvX + z). Its time derivative is α̇(t) = (hX , vX). We must now ask whether this

vector is the parallel transport of (hX , vX) along α. By definition of the coordinate

system, vX is transported to vX along the geodesic γ(t) = thX . And the tangent vector

of a geodesic is the parallel transport of itself along the geodesic, so hX is correct as

well. And this is exactly how we defined parallel transport for the manifold E.

Thus, we know the normal neighborhood about a point e ∈ E and the exponential

map. In fact, we have exp (p, z)(h̃, 0) is the parallel transport of z along the geodesic

starting at p with tangent vector h. This is the same as exp (p, 0)(h̃, z̃).

We may finally establish covariant normality of sections of B using the viewpoint

that they are maps from M into E. Let σ ∈ Γ{B}. We need to show that it maps

geodesics of M into flat submanifolds of E. Then we may apply 10.

Lemma 8. Let Q be a geodesic submanifold of M . Then EQ := ∪q∈QEq is a geodesic

submanifold of E.

Proof. First note that EQ is a submanifold as well as a subbundle of B. Let α̃ be a

curve in EQ and let α be its projection to M which is actually a curve in Q. Parallel

transport of a tangent vector of Q along α stays within the tangent bundle of Q by

assumption of Q being geodesic. Parallel transporting a vector in Ep to q is definitely

an operation which takes the vector into an element of Eq. By looking at the definition

of parallel transport of tangent vectors to E, we see that the parallel transport does

preserve TEQ; thus EQ is geodesic.

Lemma 9. Let Q := γ be a geodesic. Then EQ is a flat submanifold.

Proof. We shall show that parallel transport in EQ is independent of the path. First

note that parallel transport is independent of the parametrization of the path. Given

a path α̃ in EQ, Then the projection of α is γ parametrized in a different way; in

particular, α can change directions along γ. The parallel transport operators multiply
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together and even can cancel each other if the path goes forwards and backwards. Thus,

the parallel transport of a tangent vector along α̃ is just the parallel transport of the

appropriate objects along γ from the beginning point of α to the terminating point.

In contrast, if we assume Q is some higher dimensional flat submanifold of M , we

do not have this result unless the curvature of the bundle connection vanishes on BQ.

Noting that the image of the geodesic γ, under the manifold map σ ∈ Γ{B}, is

contained in the flat submanifold Eγ , i.e. the set of fibers over γ, we find that sections

of a bundle are covariantly normal by applying 10.

We make a further remark that the nth Taylor approximation of the section is the

following:

Tnp [σ](q, ψ) = PBγp→q(
n∑
i=0

Di
p[σ]({exp−1

p q}i)

where PBγp→q is the parallel transport operator along the unique geodesic connecting p

and q in this small neighborhood and the covariant derivatives of σ are the bundle’s

covariant derivatives. This claim follows from considering the normal coordinates for

the manifold E; these coordinates correspond to the basis field described in Appendix

B.
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Chapter 7

Two algorithms for exact quantum dynamics from

trajectories

In this chapter, we shall discuss a new idea for solving Schrödinger’s equation. The

results are few, but the potential for more is extremely high. We start by rewriting

Schrödinger’s equation into the usual pair of the modified Hamilton-Jacobi equation

and the continuity equation. Then a natural iterative process suggests itself. Namely,

ignore the quantum potential, solve the H-J equation, use the continuity equation to

get a new density, use that density to obtain an approximate quantum potential, and

repeat. The fixed point of this scheme is the solution. We are particularly interested

in an equivalent formulation involving trajectories. An important fact is that if we

had the Bohmian trajectories and the initial wave function, then we could produce the

solution to Schrödinger’s equation. But to find the Bohmian trajectories, we need to

already have the solution to Schrödinger’s equation. The two algorithms we will be

discussing provide a separation. We start with an initial set of trajectories, using them

to construct an approximate wave function. We then use that new wave function to

find new trajectories. We continue. Pictorially, we have

Q0 → ψ1 → Q1 → · · · → Qn → ψn+1 → Qn+1 → · · ·

Convergence is a central question of any such proposal. Unfortunately, we have no

general answer to that question. We do, however, have some examples of beautiful

convergence. Unfortunately, these are restricted to only quadratic potentials in 1 di-

mension. Additionally, we have used the process on the fixed point to derive a PDE

that the family of Bohmian trajectories satisfies. That is to say, we can actually find

the Bohmian trajectories before solving Schrödinger’s equation. We explicitly do this in

the special case of when the Bohmian trajectories are linear in the initial configuration;
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we do this only in 1 dimension.

7.1 Background material

In chapter 3, we derived the Hamilton-Jacobi equation and the continuity equation

from Schrödinger’s equation. In this section, we write down what the solutions are

to these equations in terms of the characteristics. It is convenient to start with some

definitions and notations. Appendix F contains the proofs of these assertions as well as

a discussion of the derivatives of the determinant of the differential of a map.

We start with some definitions. By family of trajectories, we shall mean essentially

a flow although we do not make assumptions about invertibility. If Q is a family of

trajectories, then we shall write Q(x0, t) to denote the configuration at time t of a

system whose initial configuration was x0. We also define the action functional. Given

a family of trajectories Q, a potential U , and an initial function T , we define

S[Q,U, T ](x0, t) := T (x0) +
∫ t

0
[
Q̇2

2
(x0, s)− U(Q(x0, s), s)]ds.

Our last definition is for the amplitude functional. Given the family Q and an initial

function P , we define

R[Q,P ](x0, t) = P (x0)|DQ(x0, t)|−
1
2 .

As we shall discuss, these are essentially the solutions to the Hamilton-Jacobi and

continuity equations, respectively.

In this chapter, all wave functions will be complex-valued wave functions over a

given manifold Q; the examples will all be for the simple manifold Q = R. We generally

demand these functions to be smooth elements of L2(Q). We start by writing the wave

function, ψ, in polar form; ψ = Re
iS
~ , where the amplitude R ≥ 0, and the phase,

S, is real. The quantum density, ρ, is |ψ|2 = R2. We first think about the setup for

N particles moving in Rk; we shall use the usual setup for this rather than the one

we discussed in Chapter 5. Solving Schrödinger’s equation is equivalent to solving the
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coupled equations

∂S

∂t
= −

N∑
k=1

1
2mk

(∇kS · ∇kS)− V +
N∑
k=1

~
2

2mk

∆kR

R

∂ρ

∂t
= −

N∑
k=1

∇k · (ρ
1
mk
∇kS).

For a general manifold, one immediately has the same thing using the Riemannian

metric. One can also formulate N particles moving in Q. The masses can be absorbed

into the metric as described in Chapter 3. Thus, we can drop the masses and the

summations. We could also write the above equations explicitly using the metric:

∂S

∂t
= −1

2
G(DS,DS)− V +

~
2

2
G ◦D2R

R
= −1

2
∇S · ∇S − V +

~
2

2
∆R
R

(H-J)

∂ρ

∂t
= −G ◦ (D(ρDS)) = −∇ · (ρ∇S). (C)

We shall absorb the mass into the metric except possibly when we do the examples.

Equation (H-J) is almost the Hamilton-Jacobi equation for classical motion under

the potential V ; it differs by the quantum potential, −~2

2
∆R
R . Classically, the velocity

field is ∇S, which is just the Bohmian velocity field. Equation (C) is the continuity

equation; this describes how ρ evolves under the flow corresponding to configurations

moving with the Bohmian velocities. The trajectory of the system is a single integral

curve of the Bohmian velocity field.

Let Q(x0, t) be the family of trajectories solving Q̇(x0, t) = ∇S(Q(x0, t)) with in-

verse Q−1 and |DQ−1| 6= 0. Let ρ0 and S0 be the amplitude and phase of the initial wave

function. Then in the appendix, we show that (R[Q, ρ0](Q−1)(x, t)))2 is the solution

to (C) while S[Q,V − ~
2

2
∆R
R , S0](Q−1(x, t)) is the solution to (H-J).

7.2 The algorithms

We start by describing the algorithms in terms of the approximating PDEs. We shall

begin with algorithm A1. At the beginning of the nth step, we have ρn−1 := R2
n−1 and
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Sn−1. We demand that Sn satisfies

∂Sn
∂t

= −∇Sn · ∇Sn−1 +
1
2
∇Sn−1 · ∇Sn−1 − V +

~
2∆Rn−1

2Rn−1
(H-J:A1, n)

and that ρn satisfies
∂ρn
∂t

= −∇ · (ρn∇Sn). (C:A1, n)

For algorithm A2, we have a similar setup, but we demand that Sn satisfies

∂Sn
∂t

= −1
2
∇Sn · ∇Sn − V +

~
2∆Rn−1

2Rn−1
(H-J:A2, n)

and that ρn satisfies
∂ρn
∂t

= −∇ · (ρn∇Sn). (C:A2, n)

We denote by Un−1 the potential V − ~
2

2
∆Rn−1

Rn−1
.

There are several comments that may be made. First, the fixed point of both

algorithms provides the solution of Schrödinger’s equation. Second, both equations

in A1 are linear, understood as solved in the appropriate order, whereas (H-J:A2) is

quadratic in the spatial derivative. Third, in the limit ~ → 0, A2 becomes classical

mechanics whereas A1 does not. Indeed, if ~ = 0, A2 does not iterate and the only

step becomes a quasiclassical approximation. But for A1, this is not the case. In fact,

if ~ = 0, then A1 still iterates. It becomes an algorithm for computing the solution to

the classical H-J equation.

On the nth step of either algorithm, we define Q̇n := ∇Sn. With this definition,

Qn corresponds to the characteristics of (H-J:A1, n + 1), (C:A1, n), (H-J:A2, n) and

(C:A2, n); characteristics are trajectories that convert a PDE to an ODE. Indeed, in

A1, it can be shown that

Sn(x, t) = S[Qn−1, Un−1, S(·, 0)](Q−1
n−1(x, t), t)

and

Rn = R[Qn, R(·, 0)](Q−1
n (x, t), t).

In A2, we have

Sn(x, t) = S[Qn, Un−1, S(·, 0)](Q−1
n (x, t), t)
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and

Rn = R[Qn, R(·, 0)](Q−1
n (x, t), t).

From this perspective, A1 is close to Bohmian mechanics in spirit. At every stage,

we start with Sn and compute the integral curves of its gradient thereby forming the

family Qn(x0, t). Then we compute the Jacobian of Qn to obtain Rn+1 and the action

integral using the new potential Un+1to obtain Sn+1. In contrast, A2 is closer to the

spirit of classical mechanics. To find Qn, we actually solve the classical equations with

the force being −∇Un−1. We then use the Jacobian of Qn to define Rn and Un. This

sets us up to calculate the next set of trajectories. In A2, we do not need to compute

Sn in order to complete the step.

In algorithm A2, we encounter the issue that Sn may not be well-defined for all time;

this generally corresponds to Qn not being invertible. Following [6, pages 438–445], we

define an approximate wave function by

ψn(x, t) :=
∑

{yj |Qn(yj ,t)=x}

R[Qn, R(·, 0)](yj , t)ei(S[Qn,Un−1,S(·,0)](yj ,t)−π2 µj).

We then obtain Rn and Sn from the polar form of that wave function. The Maslov

index µj gives us an appropriate phase for the summation. Appendix F gives a slighly

more informative discussion of this.

7.2.1 The algorithms in short

We now describe the algorithms in a more mechanical fashion. Given T (x), P (x),

V (x, t), and Q(x, t), the two algorithms may be viewed as generating different ODEs

to solve involving the function q(x, t) once the initial x is fixed.

We shall denote the following procedure as A1(T, P, V,Q); it produces a family of

trajectories q(x, t).

1. Compute H := Q−1.

2. Define R := P (H)|DQ−1|
1
2 .

3. Compute S̃ := T +
∫ t

0 [ Q̇
2

2 − V (Q, s)− ~
2

2
∆R
R (Q, s)]ds.
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4. Define S := S̃(H).

5. Define q(x, t) := γx(t) where γx the solution of γ̇x(s) = (∇S)(γx(s), s) with initial

condition γx(0) = x .

For an algorithm, fix T , P , V and define B(Q) := A1(T, P, V,Q). The nth step of A1

is then the same as Bn(Q0). To start, one can choose a best guess, Q0(x, t) = x, or the

solution to Q̇0(x, t) = ∇S0(Q).

We do a similar iteration for A2. We first describe the version when Q is invertible.

We shall denote the following procedure as A2(T, P, V,Q); it produces a family of

trajectories q(x, t).

1. Compute H := Q−1.

2. Define R := P (H)|DQ−1|
1
2 .

3. Define q(x, t) := γx(t) where γx the solution of γ̈x(s) = −(∇(V − ~
2

2m
∆R
R ))(γx(s), s)

with initial condition γx(0) = x, γ̇x(0) = ∇T (x).

For an algorithm, fix T , P , V and define C(Q) := A2(T, P, V,Q). The nth step of A1

is then the same as Cn(Q0). To start, one can choose a best guess, Q0(x, t) = x, the

solution to Q̇0(x, t) = ∇S0(Q), or the classical trajectories using the initial S to for the

initial conditions.

Finally, we have the case when the trajectories are not invertible, but are generated

in a classical way. In particular, we shall let U be the potential which generated the

trajectories. In the above algorithm, it was not necessary to have this information. As

the above is mostly a special case of what is below, we shall denote the following proce-

dure as A2(T, P, V,Q,U); it produces a family of trajectories q(x, t) and the potential

u that generated those trajectories.

1. Define the set of inverse points Hy,t := Q−1(y, t).

2. Define µ(x, t) to be the Maslov index of the curve Q(x, t) under the flow of Q. In

particular, it is the number of signed zeroes that the trajectory has crossed of the

function |DQ|(x, t).
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3. Compute S(x, t) := T (x) +
∫ t

0 [ Q̇x
2

2 (s)− U(Qx(s), s)]ds− π
2µ(x, t) where U is the

potential which generated the trajectories.

4. Define R̃(x, t) := P (x)|DQ|−
1
2 (x, t).

5. Define

R(y, t) :=
√ ∑
x∈Hy,t

R̃2(x, t) + 2
∑

{x1,x2}⊂Hy,t

R̃(x1, t)R̃(x2, t) cos(S(x1, t)− S(x2, t)).

6. Define u := V − ~
2

2
∆R
R

7. Define q(x, t) := γx(t) where γx the solution of γ̈x(s) = −(∇u)(γx(s), s) with

initial condition γx(0) = x, γ̇x(0) = ∇T (x).

For an algorithm, fix T , P , V and define C(Q,U) := A2(T, P, V,Q,U). The nth step

of A1 is then the same as Cn(Q0, U0). Perhaps the most natural possibility for Q0 in

this setting is the set of classical trajectories although one could also use a free motion

or a best guess.

7.3 Simple examples

We shall now work out an example. The potential is V (x) = 1
2x

2 with initial wave

function ψ(x, 0) := e−
1
2

(x−c)2+iax. Thus, S(x, 0) = ax and R(x, 0) = e−
1
2

(x−c)2
. We

take ~ = 1 throughout this section and it is more convenient to reindex the iteration in

such a way that QN generates RN and SN . The actual family of Bohmian trajectories

for this system is Q(x, t) = x0 + c(cos(t)− 1) + a sin(t)

Assume that QN (x, t) = x + fN (t) for fN ∈ C∞(R) such that fN (0) = 0 and

˙fN (0) = a. Immediately, we have Q−1
N (x, t) = x− fN (t). Whether we use A1 or A2, we

compute RN in the same way. We find that, since DQ−1
N = 1,

RN (x, t) := R(Q−1(x, t), 0)|DQ−1(x, t)|
1
2 = e−

1
2

(x−fN (t)−c)2
.

The corresponding quantum potential is

−∆RN
2RN

= −1
2

((x− fN (t)− c)2 + 1) = −1
2

(x2 − 2x(fN (t) + c) + (fN (t) + c)2 + 1).



142

Thus, we have that the new potential is

UN =
1
2

(2x(fN (t) + c)− (fN (t) + c)2 − 1).

For A1, we compute the action integral along QN using the potential UN . We have

S[QN , UN , S(x, 0)](x0, t) = ax0 +
1
2

∫ t

0
[ ˙fN

2
(s)− 2(x0 + fN (s))(fN (s) + c)

+ (fN (s) + c)2 − 1]ds

= ax0 +
1
2

∫ t

0
[−2x0(fN (s) + c) + ˙fN

2
(s)

− fN (s)2 + c2 − 1]ds.

To obtain SN (x, t), we insert Q−1
N (x, t) for x0 in the above formula. To calculate QN+1,

we take the gradient of SN . We compute that ∇SN (x, t) = a−
∫ t

0 (fN (s) + c)ds

Let f(i),N be the ith antiderivative of fN such that f (j)
(i),N (0) = 0 for all 0 ≤ j < i.

We find that

Q̇N+1(x, t) = ∇SN (QN+1(x, t), t) = a− f(1),N (t)− ct.

The solution to the above equation, with initial condition QN+1(x, 0) = x, is

QN+1(x, t) = x+ at− f(2),N (t)− 1
2
ct2

As for A2, we do not compute SN at all. Instead, we compute the trajectories

directly from having the quantum potential. Indeed, we need to solve

Q̈N+1(x, t) = −∇UN (QN+1(x, t), t) = −(f(t) + c)

with the initial conditions QN+1(x, 0) = x and Q̇N+1(x, 0) = a. The solution is

QN+1(x, t) = x+ at− f(2),N (t)− 1
2
ct2

In this example, we have that the two algorithms produce the same trajecto-

ries. Furthermore, the produced solutions are again of the same form. Starting with

Q0(x, t) = x0 + f(t) and iterating this scheme, we find

QN (x, t) = x+ c
N∑
m=1

(−1)mt2m

(2m)!
+ a

N∑
m=0

(−1)mt2m+1

(2m+ 1)!
+ (−1)Nf(2N)(t).

The convergence of the algorithm in terms of trajectories is that of uniform convergence

on R × [0, T ] to the actual Bohmian trajectories.
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7.4 Propagators and the classical algorithm

We now discuss an application of A2. The idea is to compute the propagator, or

Green’s function, for Schrödinger’s equation using this algorithm. If we have a quadratic

potential, then A2 will compute the propagator exactly. The fixed point trajectories

are the classical trajectories. We exemplify this with the one-dimensional system whose

potential is V (x, t) = 1
2a(t)x2 + b(t)x+ c(t).

The Green’s function is the integral kernel, G(x, t; y0, 0), for which

ψ(x, t) :=
∫
G(x, t; y0, 0)ψ(y0, 0)dy0

is a solution to the Schrödinger’s equation with initial condition ψ(x, 0). Finding

G(x, t; y0, 0) is equivalent to solving Schrödinger’s equation with the initial wave func-

tion being δ(x−y0). Such a wave function may be thought of as representing a swarm of

particles located at y0 with a uniform spread of initial velocities, then we may attempt

to use A2 to solve the problem. Let the uniform distribution be R(v, 0) =
√
γ where γ

is a constant to be discussed later.

Let the initial family of trajectories, which are now functions of the initial velocity,

be of the form

Q0(v, t) = f(t)v + g(t)y0 + h(t) (7.1a)

f(0) = ġ(0) = h(0) = ḣ(0) = 0 (7.1b)

ḟ(0) =g(0) = 1 (7.1c)

wher f , g, and h are independent of y0. Then

Q−1
0 (x, t) =

1
f(t)

(x− y0g(t)− h(t)).

Ignoring the issue for now of when f(t) = 0, we find that

R0(x, t) := R(Q−1
0 (x, t), 0)|∂Q0

∂v
|−

1
2 (Q−1

0 (x, t)) =
√

γ

f(t)
.

We therefore have that the quantum potential vanishes as R0 does not depend on x.

Thus, U0 is the classical potential and Q1 will be the classical trajectories. For a

quadratic potential, the classical trajectories are of the same form as Q0. Thus, the
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classical trajectories are the fixed point of the algorithm. Therefore, let f , g, and h be

the appropriate functions for the solutions to the classical system according to (7.1a).

The equations they satisfy, in addition to the initial conditions (7.1b), (7.1c) are

mg̈(t) = −a(t)g(t) (7.2a)

mf̈(t) = −a(t)f(t) (7.2b)

mḧ(t) = −h(t)a(t)− b(t). (7.2c)

Note that h vanishes if b vanishes.

Given f , we can immediately write down R for the Green’s function. It is possible

for f to have zeros. A zero of f , which is a very singular caustic, can be dealt with as

we suggested before. We are essentially using the square root to see the correction in

the phase appearing as the Maslov index tells us. Since the Maslov index will increase

by 1 through a generic caustic, if we start in the middle of a caustic, then we take the

index to be 1
2 . What we need to do is to compute the action S; once we have that, then

the solution will be

G(x, t, y0, 0) = R(t)e−iπ4−µ(t)π
2 ei

Syt0
~ .

We can do this using either the action integral or the fact that ∇S is the velocity field,

i.e. ∇S(x, t) = mQ̇(Q−1(x, t), t). Define kt := y0g(t) + h(t) and let ft denote f(t). The

second method yields

S(x, t) = m(S̃y0(t) +
ḟt
ft

x2

2
− ḟt
ft

(ktx+ (k̇tx))

where S̃y0 is an unknown function for which one needs the first method to compute.

To do so, we write down the action integral, which is∫ t

0
[
m

2
(ḟsv + k̇s)2 − (

1
2
as(fsv + ks)2 + bs(fsv + ks) + cs)]ds.

Replacing v with x
ft
− kt

ft
, simplifying, and only retaining the terms not involving x, we

find ∫ t

0
[
m

2
(−ḟs

kt
ft

+ k̇s)2 − 1
2
a(s)(−fs

kt
ft

+ ks)2 + b(s)(−fs
kt
ft

+ ks) + c(s)]ds (7.3)

In summary, we have reduced the computation of the propagator to computing the

above integral and the set of ODEs (7.2). And, to simplify even more, the terms not
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involving y0 are common to all of the Green’s functions and do not have to be computed.

Indeed, c(s) is largely irrelevant and could even be thought of as a free parameter to

be chosen to cancel such terms.

There is also an argument, based on quantum mechanical heuristics, which estab-

lishes what γ should be. We want a measure on the velocity space which corresponds to

a delta function in the position space. We therefore take the Fourier transform of the

delta function, finding that 1√
2π
eiky =: ψ̂ with density |ψ̂|2 = 1

2π . But this is momentum

space and the relation to the velocity space is k = mv
~

. Taking the differential of that

relation, we find that dk
2π = mdv

2π~ implying that γ = m
2π~ .

We finish by explicitly computing the propagators for the free potential and the

harmonic oscillator. The free potential, V (x) = 0, has f(t) = t, g(t) = 1, and h(t) = 0.

We find that the propagator is

G(x, t, y0, 0) =
√
γ

t
e−i

π
4 ei

m
~

(x−y0)2

2t

for t > 0. For t < 0 multiply the above by ei
π
2 as the Maslov index indicates. It is a

fact that

δ(x− y0) = lim
a→+∞

a√
π
ei(a

2(x−y0)2−π
4

).

Thus, this confirms that the initial condition is satisfied, that the Maslov index is

contributing the correct factor, and that γ is m
2~π .

As for the harmonic oscillator, the following comes out. Let the potential be V (x) =
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mω2

2 x2. Then f(t) = 1
ω sin(ωt), g(t) = cos(ωt), and h(t) = 0. The integral (7.3) becomes

S̃y0(t) =
∫ t

0
[
m

2
(cos(ωs)

ωy0 cos(ωt)
sin(ωt)

+ y0ω sin(ωs))2

− mω2

2
(−sin(ωs)

ω

ωy0 cos(ωt)
sin(ωt)

+ y0 cos(ωs))2]ds

=
mω2y0

2

∫ t

0
[(cos2(ωs)− sin2(ωs)) cot(ωt)2

+ 4(cos(ωs) sin(ωs)) cot(ωt)

− (cos2(ωs)− sin2(ωs))]ds

=
mω2y0

2
(

1
ω

(sin(ωt) cos(ωt)(cot(ωt)2 − 1) + 2(
1
ω

sin2(ωt)) cot(ωt)

=
mωy0

2
cot(ωt)

Thus, when we put it all together, we find

G(x, t, y, 0) =
√
| γω

sin(ωt)
|e−i(

π
4

+µ(t)π
2

)ei
mω
2~

(x2+y2) cot(ωt)−2xy csc(ωt).

The Maslov index, µ(t), starts at 0 and is incremented by one at the end of every half

period; this incrementation corresponds to when all of the trajectories come together

and form a very singular caustic. The Maslov index produces the correct phase as

the trajectories move through the singularity. Explicitly, we have µ(t) = k for t ∈

[k πω , (k + 1)πω ). Computing the limits as t approaches a singular point, we find that

G(x, k
π

ω
, y, 0) = ei

π
2
k


δ(x− y) if k is even

δ(x+ y) if k is odd
.

This is a complete description of the propagator for the harmonic oscillator.

7.5 Some calculations involving the chain rule

We wish to provide a succinct formula for computing the quantities in these algorithms.

The basic quantity to compute is the quantum force and this involves three derivatives

of an object created by composition. These are all simple calculations using the chain

rule. We shall use the notations of Section 7.2.1
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We start with R. This is the object for which much computation must be done.

First, we define R̃(x, t) := P (x)|DQ|−
1
2 and then R := R̃(H). We will have to compute

up to three derivatives of R. Using the chain rule, we find that

DR(v1) =DR̃(DH(v1))

D2R(v1 ⊗ v2) =D2R̃(DH(v1)⊗DH(v2)) +DR̃(D2H(v1 ⊗ v2))

D3R(v1 ⊗ v2 ⊗ v3) =D3R̃(DH(v1)⊗DH(v2)⊗DH(v3))

+D2R̃{(D2H(v1 ⊗ v2)⊗DH(v3))

+ (D2H(v1 ⊗ v3)⊗DH(v2))

+D3H(v1)⊗ (D2H(v2 ⊗ v3))}

+DR̃(D3H(v1 ⊗ v2 ⊗ v3)).

In our equations, we need to compute the quantum force which is the gradient of

the Laplacian of R divided by R. We have that

D(
∆R
R

)(v) =
D3R(G⊗ v)

R
− D2R(G)DR(v)

R2

where G ∈ TM⊗2 is the dual of g; in coordinates, G =
∑

(i,j)∈n2 Gijvi ⊗ vj and Gij are

the components of the inverse matrix of gij .

The derivatives of R̃ can in turn be computed using the product rule, the chain rule

and the differentiation formulas for the determinant developed in Appendix F.

Both for implementing the algorithms and for an application of A2 described in

the next section, we need to compute Di
Q(x,t)[Q

−1] in terms of the derivatives of DQ.

Yet again we use the chain rule. We need it up to the third order. Let y := Q(x);

alternatively, define x := Q−1(y). We also define B := (Dx[Q])−1. For i = 1, 2, 3, let
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vi ∈ TyM be arbitrary. We then find that

Q−1(Q(x)) =Id (7.4)

Dy[Q−1](v1) =B(v1) (7.5)

D2
y[Q
−1](v1 ⊗ v2) =−B(D2

x[Q](B(v1)⊗B(v2))) (7.6)

D3
y[Q
−1](v1 ⊗ v2 ⊗ v3) =−B(D3

x[Q]{B(v1)⊗B(v2)⊗B(v3)})

+B(D2
x[Q](B(D2

x[Q](B(v1)⊗B(v2)))⊗B(v3)

+B(D2
x[Q](B(v1)⊗B(v3)))⊗B(v2)

+B(v1)⊗B(D2
x[Q](B(v2)⊗B(v3))))

(7.7)

These are routine calculations. For example, to compute the second derivative, the

chain rule leads to D2
Q[Q−1](Dx[Q] ⊗ Dx[Q]) + DQ[Q−1](D2

xQ) = 0. One then solves

for the second derivative of the inverse and then composes with the inverse of the first

derivative using the equation for the first derivative to substitute in B.

In total, we can see what we need. Before starting the algorithms, we compute the

first derivative of T , i.e. the 1-form dual to the initial Bohmian velocity field. We also

compute three derivatives of P . The rest of the information is mainly computed from

Q. We need to compute four derivatives of Q although the fourth derivative appears

only in the determinant derivative. To finish the computations, Q−1 and DQ−1 need

to be computed. We then simply plug the objects into the correct places.

7.6 The Bohmian velocity partial differential equation

From the previous section, we discussed some ways in which the essential computations

can be organized. We apply these ideas here, at the fixed point, to derive a PDE for

the family of Bohmian trajectories. One advantage of this is that it is not necessary to

compute the inverse of a given family of trajectories; the disadvantage is that we are

again facing a PDE.

The idea is that one writes down the family of ODE’s generated by the algorithm

A2. One then assumes that the fixed point has been achieved. The ODE for A2 is

g(q̈(x, t), ) = −dV (q(x, t)) +QF (Q−1(q(x, t), t), t)
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where the quantum force, QF , is thought of as being a function of the initial x0. When

we evaluate along the fixed point, we have that Q−1 and Q cancel, just leaving the

quantum force evaluated at x.

We have the following PDE for Q, the family of Bohmian trajectories for a given

ψ(x, 0) and potential V . We write it in terms of 1-forms acting on a vector v. C is the

determinant of DQ, B is (D[Q])−1. We sometimes employ subscripts to denote which

objects are being contracted. A rough schematic of the quantum force expression is

quite helpful in understanding the PDE; the schematic is

1
R̃
{D3[Rq](·) +D2[R̃](·) +D[R̃](·)} − 1

R̃2
{D2[R̃](·) +D[R̃](·)}{D[R̃](·)}.

One task is to compute, somewhat explicitly, the derivatives of R̃. The other task is

to compute the various different tensors that are composed into the · slots. It can get

quite messy.
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g(Q̈(x, t), v) =− dVQ(v) +
~

2

2
(

1
P
{

(D3P − 15
8
PC−3D3C

− 1
2
C−1D2P12 ⊗DC3 −

1
2
C−1D2P13 ⊗DC2 −

1
2
C−1DC1 ⊗D2P23

+
3
4
C−2D2C12 ⊗DP3 +

3
4
C−2D2C13 ⊗DP2 +

3
4
C−2DP1 ⊗D2C23)

◦ ({(B ⊗B) ◦G} ⊗B(v))

+ (D2P +
3
4
PC−2D2C

− 1
2
C−1DP ⊗DC − 1

2
C−1DC ⊗DP )

◦ (−{B ◦ (D2[Q]) ◦ (B ⊗B) ◦G} ⊗B(v)

− {B ◦ (D2[Q]) ◦ (B(G1)⊗B(v))} ⊗B(G2)

−B(G1)⊗ {B ◦ (D2[Q]) ◦ (B(G2)⊗B(v))})

+ (C−
1
2DP − 1

2
PC−1DC)

◦ (−B ◦ (D3[Q]) ◦ {(B ⊗B) ◦G} ⊗B(v)

+B ◦D2[Q] ◦B ⊗B ◦ ({D2[Q] ◦ (B ⊗B) ◦G} ⊗ v

+ {D2[Q] ◦ (B(G1)⊗B(v))} ⊗G2

+G1 ⊗ {D2[Q](B(G2)⊗B(v)})))}

− 1
P 2
{(D2P − 1

2
C−1DP ⊗DC − 1

2
C−1DC ⊗DP +

3
4
PC−2D2C)

◦ (B ⊗B) ◦G

+ (DP − 1
2
PC−1DC) ◦ (−B) ◦ (D2[Q]) ◦ (B ⊗B) ◦G}

{DP − 1
2
PC−1DC)(B(v))}

with the initial conditions

Q(x, 0) =x

Q̇(x, 0) =∇T (x).

For the algorithms, the only change in the quantum force is the evaluation which takes

place at Q−1(q(x, t)) instead of at x; appearances of Q outside the quantum force term

are replaced with q.
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There is not much to say about this PDE. Notice that if C is constant, then many

of the terms vanish. The equation, however is still rather unapproachable.

A key simplification occurs when D2Q = 0 everywhere which geometrically is when

the mapping Q preserves geodesics as proven in Chapter 6. The PDE becomes the

relatively simple

g(Q̈(x, t), v) =− dVQ(v) +
~

2

2
(

1
P
D3P ◦ ({(B ⊗B) ◦G} ⊗B(v))

− 1
P 2
{D2P ◦ (B ⊗B) ◦G}{DP (B(v))}.

Notice that C has disappeared entirely from the equation.

7.6.1 The one-dimensional case

If M is just R, then G becomes 1
m , the derivatives become numbers, and we use primes

to denote spatial differentiation. The full PDE simplifies slightly, but it is still brutal.

If Q′′ = 0 identically, then we can solve the equation. We have

mQ̈(x, t) = −V ′Q +
~

2

2
(

P ′′′

mP (Q′)3
− P ′′P ′

mP 2(Q′)3
.)

Furthermore, Q′′ = 0 implies that Q(x, t) = f(t)x+ k(t).

Let Hn(x) denote the nth Hermite polynomial. We claim that if V (x) = m
2 ω

2x2 +

mγx and

ψ(x, 0) = Hn(
√
md/~(x− c))e−

md
2~

(x−c)2
ei
m
~

(a
2

(x−c)2+b(x−c)),

(d > 0), then the trajectory solutions are of the above affine form and this PDE can

be solved quite explicitly; it actually becomes two decoupled ODEs. We shall use that

y(x) := Hn(x)e−
x2

2 satisfies y′′ = (x2 − 2n − 1)y; this comes from the Schrödinger

equation for the harmonic oscillator. For us, the useful imphlication of the Hermite

differential equation is

yy′′′ − y′′y′ = 2xy2 + (x2 − 2n− 1)y′y − (x2 − 2n− 1)yy′ = 2xy2

When we use it, x will be
√
md/~(x−c) and we shall also be using the chain rule which

produces a multiplicative factor of
√
md/~

3
.
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It is convenient to take Q(x, t) = f(t)(x− c) + k(t). Then we have that

PP ′′′ − P ′′P ′

P 2
= 2(

√
md/~(x− c)

√
md/~

3

The PDE becomes

m(f̈(t)(x− c) + k̈(t)) =
~

2

2mf(t)3
(2(md/~)2(x− c))

−mω2(f(t)(x− c) + k(t))−mγ

=
md2

f(t)3
(x− c)−mω2f(t)(x− c)−mω2k(t)−mγ.

This decouples into the two independent ODEs

f̈ =
d2

f3
− ω2f (7.8)

k̈ =− ω2k − γ (7.9)

with the initial conditions

f0 = 1, ḟ0 = a, k0 = c, k̇0 = b.

The ODE (7.9) is an easy equation to solve; its solution is

k(t) = (c+
γ

ω2
) cos(ωt) +

b

ω
sin(ωt)− γ

ω2
.

The other ODE is not as easy to solve. The inspiration is that (7.8) is actually the

ODE that the radius function satisfies in a 2-dimensional, classical, harmonic oscillator

system. More precisely, let u and v satisfy

ü = −ω2u, v̈ = −ω2v

u(0) = 1, u̇(0) = a, v(0) = 0, v̇(0) = d.

Define r :=
√
u2 + v2. Then, by differentiating and using the conservation of J2 =

(u̇v − v̇u)2 = d2, we find that r satisfies

r̈ =
d

r3
− ω2r

with the initial conditions

r(0) = 1, ṙ(0) = a.



153

Thus, r and f satisfy the same equations implying that they are the same function.

But we know how to solve the harmonic oscillator. Doing so and finding the radial

function, we have

f(t) = r(t) =

√
cos2(ω2t) + 2

a

ω
cos(ωt) sin(ωt) +

a2 + d2

ω2
sin2(ωt).

For both f and k, if we take the limit as ω goes to zero, then the correct solution for

ω = 0 is the limiting solution.

We have just computed the Bohmian trajectories. An immediate consequence is

that we have the amplitude. Namely,

R(x, t) =P (
x− k(t)
f(t)

+ c)|f(t)|−
1
2

=
1√
f(t)

Hn(
√
md/~(

x− k(t)
f(t)

))e−
md
2~

(
x−k(t)
f(t)

)2

.

The phase is

S(x, t) =
m

~

(
1
2
ḟ(t)(

x− k(t)
f(t)

)2 + k̇(t)(
x− k(t)
f(t)

) + h(t))

where h(t) is a function for which one needs to do the action integral in order to

determine it. We shall not compute h(t).
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Appendix A

The set-indexed tensor product

Let T be a finite set. For each element a ∈ T , we associate a vector space Wa to that

element. We define the T -indexed Cartesian product of these spaces to be

×
a∈T

Wa := {f |f : T →
⋃
a∈W

Wa such that f(a) ∈Wa}.1

Endowed with the usual vector space structure, this is the T -indexed direct sum of the

spaces.2 We define the T -indexed tensor product
⊗

a∈T Wa to be the set of multilinear

functionals defined on ×a∈T W ∗a , the T -indexed Cartesian product of the dual spaces.

If, as will be our case, the vector spaces Wa are the same vector space, say W , then

simplifications occur. Notationally, W T denotes the Cartesian product; W⊗T denotes

the tensor product. As for the definition of the Cartesian product, the union can be

replaced with the vector space itself. The Cartesian product becomes

W T = {f |f : T →W}.

From this point on, we will assume that we have only one vector space. The more

general case does not substantially change any statements below, but it is irrelevant to

the purpose of this paper.

Let us consider a different approach to W⊗T . We will use the standard equivalence

class approach to tensors. We start by introducing some notation. For f ∈ W T , we

write ⊗a∈T wa, where wa := f(a). Given a decomposition of T into the subsets Tα,

α ∈ A, for some A, then we certainly take as true

⊗
α∈A

( ⊗
a∈Tα

wa) = ⊗
a∈T

wa = f.

1We could also say that the Cartesian product is the set of sections of the bundle over the discrete
space T whose fiber at a is Wa.

2As an example, the tangent space of N
R

3 is the q-indexed direct sum of the tangent spaces in
physical space.
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A special case of the above, and one with a special abuse of notation, is when A is

a two element subset and one of the sets in the decomposition has only one element,

say a′. Then we would write (⊗a∈T
a 6=a′

wa) ⊗ wa′ which is equal to ⊗a∈T wa as well as

wa′ ⊗ (⊗a∈T
a 6=a′

wa). We can then view the T -indexed tensor product as the equivalence

classes of all formal linear combinations of the elements in the setW T under the relations

c( ⊗
a∈T

wa) = ( ⊗
a∈T
a 6=a′

wa)⊗ cwa′

( ⊗
a∈T
a 6=a′

wa)⊗ xa′ + ( ⊗
a∈T
a 6=a′

wa)⊗ ya′ = ( ⊗
a∈T
a 6=a′

wa)⊗ (x+ y)a′ .

These relations should hold for every a′ ∈ T , c ∈ C and wa wa′ , xa′ , ya′ ∈ W . We

should note the standard fact that the multilinear functionals acting on W T extend to

linear functionals acting on W⊗T ; this is a third way of viewing W⊗T .

If W has an inner product, then there is a natural inner product on W⊗T . Namely,

for elements in W T , we define the inner product to be

( ⊗
a∈T

wa, ⊗
a∈T

va) :=
∏
a∈T

(wa, va).

We then extend this definition to W⊗T by using the appropriate linearities.

If we have a linear operator C acting on W , then Ca shall denote a linear operator

acting on W⊗T such that, when acting on product elements, it applies C to the ath

factor while applying the identity to the other factors, i.e.

Ca
′
( ⊗
a∈T

wa) := ( ⊗
a∈T
a 6=a′

wa)⊗ Cwa′

We finish with a word about contractions. The set-indexed tensor product is ex-

cellent for use with contractions. Indeed, given w ∈
⊗

a∈αE ⊗
⊗

b∈β E
∗, then the

contraction of w over the index pair (ã, b̃) is denoted by C(ã, b̃)w and is an element

of
⊗

a∈{α\{ã}}E ⊗
⊗

b∈{β\{b̃}}E
∗. This allows one to notationally keep track of which

indices were contracted. Using numbers as indices eliminates this information. Fur-

thermore, one can also see that a type of unit analysis may be invoked. In other

words, the expression C(ã, b̃)w + C(a′, b′)w would seem to make no sense whereas

C(ã, b̃)C(a′, b′)w + C(ã, b′)C(a′, b̃)w would make sense. With numbers, this would be
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hard to indicate. As such, the set-indexed tensor product may be as helpful in formu-

lating meaningful expressions as dimensional analysis has historically been.
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Appendix B

A very useful frame field

In this part, we shall explain how to find sections satisfying constraints on the symmetric

part of their covariant derivative. Let M be a manifold with connection and E be a

vector bundle over M whose fiber is either isomorphic to Rk or Ck. Fix p ∈ M . This

appendix relies upon the work of Chapter 6 and is used in Chapter 3

Choose a coordinate neighborhood about p such that for every point q in the neigh-

borhood, there is a unique geodesic between p and q. Choose a basis {ei}ki=1 of the

fiber Ep for the rank k bundle E over M . Parallel transport these vectors along the

geodesics emanating from p, defining a basis field also denoted by {ei}ki=1.

Let q be any point in the neighborhood. Take γv to be the unique geodesic between

p and q. Then, by definition, for each i, ∇v[ei] = 0 along γv. Thus, Corollary 1 applies

and we may conclude that the symmetric part of Dn
p [ei] = 0 for all i.1 We emphasize

that this is only true at p.

Now define A :=
∑k

i=1 f
iei where the f i are scalar functions defined on the neigh-

borhood. Then the symmetric part of the covariant derivatives of A are the symmetric

covariant derivatives of the f i’s. Using Corollary 3, we know that the symmetric part

of the higher order covariant derivatives of the f i’s are the Euclidean derivatives when

expressed in normal coordinates. Thus, it is reasonably easy to specify the symmetric

part of various higher order covariant derivatives.

The other parts of the covariant derivatives are part of the geometric structure of

the connection. For example, the second covariant derivative’s antisymmetric part is

1It is true that the diagonal part of a tensor determines its symmetric values. One proof is based
on the following. Define f(a1, . . . , ak) := A({

∑
i aiei}

n). Notice that we know f for all values of the
ai’s. Expand the right-hand side. Taking the appropriate nth-order partial derivatives with respect to
the ai’s and evaluating the derivatives at (0, . . . , 0), we can generate any symmetric expression in the
ei’s of length n that we wish.
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the curvature tensor, at least if the connection on M has no torsion. More specifically,

we claim

∇x[∇y[A]]−∇y[∇x[A]]−∇[x,y][A] = D2[A](y ⊗ x− x⊗ y)−D[A](τ(x, y))

where τ is the torsion; torsion, acting on a function f , is

τ(x, y)f = (∇x[y]−∇y[x]− [x, y])f = D2[f ](x⊗ y − y ⊗ x).

These assertions may be verified using the chain rule. A typical fact to use, for example,

is

∇x[∇y[A]] = D2[A](y ⊗ x) +D[A](∇x[y]).

The formulas involving the differentiation of the vector fields are the usual formulas for

the curvature and torsion of a connection. Writing it in this fashion demonstrates that

curvature is independent of the connection on the manifold. But writing it using the

higher covariant derivatives allows us to immediately see that the objects are tensors

in the tangent vector slots involving x and y. As for the curvature being a tensor in

A, that is why the torsion term is necessary. Indeed, multiply A by a function f , and

one sees that cross terms cancel when computing the antisymmetric part leaving the

expression in A that we want plus a torsion term. Subtracting the torsion therefore

eliminates the contribution of f .

Another way to view the subtraction of the torsion is to think of torsion as a type

of curvature and that multiplication of a scalar function times a section is actually the

tensor product of the section of E with a section of the trivial one-dimensional bundle

over M . Then, as is easily seen, the curvature of the tensor product connection is a

sum of the two curvatures. Thus, we subtract the function’s curvature to obtain the

curvature of the bundle E.

In any event, when we use our special basis, we are only left with the antisym-

metric part as the symmetric part of the basis fields vanish at p. Thus the second

covariant derivatives of these fields is the curvature tensor applied to field that we are

differentiating, assuming that there is no torsion.
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As an application of this, we can prove that if E is a complex bundle with a con-

nection and a parallel inner product (, ), then the curvature tensor is anti-self-adjoint.

Let R be the curvature tensor. Then, to establish our claim, we need to show that

(ψ,Rφ) = −(Rψ, φ)

for any sections ψ and φ of E. Fix a point p ∈ M . Given ψp, φp ∈ Ep, define ψ and φ

by parallel transporting the value at p to all the other points in an appropriately small

neighborhood about p. As just explained, D2ψ = Rψ and similarly for φ where we use

a torsionless connection on M to compute the second covariant derivative. Since the

inner product is parallel, we have that (ψ, φ)q = (ψ, φ)p for all q in the neighborhood.

More to the point, we have D[(ψ, φ)] = 0 and, more importantly,

D2[(ψ, φ)] = 0.

But notice that

D2
p[(ψ, φ)] = (D2

p[ψ], φ) + (ψ,D2
p[φ]) = (Rψ, φ)p + (ψ,Rφ)p;

note that only at p do we have the vanishing of the first derivative terms in addition

to the second derivative terms being the curvature tensor. As one can see, we have our

result.
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Appendix C

The issue of self-adjointness

There are technical issues that we have avoided. In particular, the formal Hamiltonian

may not be essentially self-adjoint when defined on the domain of smooth, compactly

supported wave functions on Q. In [16], it is shown that for two identical particles

moving in two dimensions, there is a one-parameter family of self-adjoint extensions

for each periodicity condition except the one corresponding to fermions, for which the

extension is unique. That paper argues for a certain regularity condition which does

select out the usual extension.

In [2, 52], the issue of self-adjointness for the Aharonov-Bohm effect is explored.

Modelling on the plane with the origin removed, one finds that, in addition to the

topological choice, there is a family of extensions specified by four real parameters.

They use the bundle approach and specify the connection first before considering the

self-adjoint extensions.

In general, if Q’s Hamiltonian is not an essentially self-adjoint operator on the

usual small domain of wave functions, then one needs to appeal to the particulars of

the situation to make the appropriate selection. With the bundle approach, it seems

necessary to first make the topological choices and then ask for extensions. For the cut

approach, it would seem to be reasonable to do both at the same time. In the case

of the covering space it seems possible that we could first pick the extension on the

covering space and then choose among the compatible periodicity conditions.

Finally, from the perspective of Bohmian evolutions, it is sufficient to choose the

wave functions which can serve as initial wave functions. That is to say, for our theory

we need to specify what are the allowed initial conditions. The wave functions which are

allowed are those which provide a Bohmian evolution for typical configurations. This is
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a dense set invariant under the Schrödinger evolution; hence it is a domain of essential

self-adjointness. Thus, if A denotes the set of Bohmian wave functions, then our theory

is completely specified with the following information: {Q, g, E,∇, (, ),S, V, γ,A}.
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Appendix D

On the question of the triviality of the Bose and Fermi

bundles

The notation of this section is that B(N, s) is the Bose bundle for spin-s particles and

F(N, s) is the Fermi bundle. This is the notation for 3 = 3. For 3 > 3, we replace s

with the dimension of the complex vector space. So s is replaced with 2s+ 1.

Here are the results of this section:

1. For N = 2, 3 = 3, the triviality of the bundles are as follows:

s = 2l s = 2l + 1
2 s = 2l + 1 s = 2l + 3

2

B(2, s) trivial nontrivial nontrivial trivial

F(2, s) nontrivial nontrivial trivial trivial

for l ∈ N.

2. For N ≥ 2, we have B(N, 2l + 1) is nontrivial and F(N, 2l) is nontrivial. We do

not know the triviality or nontriviality of the other bundles.

3. The configuration space of NR3 is orientable if and only if 3 is even.

Throughout, 3 ≥ 3. The nontriviality results apply for any such 3. The triviality

results only apply for N = 2, 3 = 3 and for the Bose line in any dimension.

Lemma 10. A bundle is trivial iff it has a flat connection with trivial holonomy.

Proof. If it is trivial, say M × V , then any basis of V translates into a global basis.

Hence, the coordinates provide the way to do trivial transport. If a bundle has trivial

holonomy, then construct a basis by parallel transporting it. As parallel transport

along any closed path is, by assumption, the identity operation, the constructed basis

is well-defined and smooth. Note that having trivial holonomy is the only way that a

connection can have a global parallel basis.
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Theorem 12. If L is a real or complex line bundle over Q := N
R

3, then it is nontrivial

if there exists a flat connection ∇L on L such that its holonomy is the alternating

character of π1(Q).

Proof. The heart of the proof is the following idea. The difference between two connec-

tions is a 1-form and for both of them to be flat, the 1-form must be closed. Furthermore,

to have a nontrivial holonomy, the 1-form must be non-exact. Since all closed 1-forms

on Q are exact, we are done.

The details are the following. We need to recall a few basic bundle facts.

1. The difference of two connections on the same bundle is a matrix-valued 1-form.

For complex (real, respectively) line bundles, this means complex-valued (real-

valued) 1-forms. All we need to check is that it satisfies

(∇1 −∇2)(fψ) = ∇1fψ −∇2fψ = f(∇1ψ −∇2ψ),

i.e. it needs to be a tensor. This follows from the Leibniz rule imposed on all

connections; namely ∇fψ = dfψ + f∇ψ.

2. Let P 2
γ and P 1

γ be the holonomy operators for ∇1, ∇2 along the path γ. By

definition, ∇iγ̇P iγ = 0. We define Cγ to satisfy P 2
γ = CγP

1
γ . In particular, Cγ =

P 2
γ (P 1

γ )−1. If we further define ω := ∇2 −∇1 then we have

∇1
γ̇Cγ = −ω(γ̇)Cγ . (D.1)

3. If a connection is flat, then its parallel transport operators depend only on the

homotopy class of the curve.

4. For a line bundle, ω is a 1-form and Cγ is just a number. Then the solution to

equation (D.1) is Cγ = e−
∫
γ ω. If we define f(γ) = −

∫
γ ω and if γ and σ are in

the same homotopy class, then f(γ)− f(σ) must be an integral multiple of 2πi in

order that Cγ = Cσ. But the difference function is a continuous function with a

discrete set of values. Hence, it must be constant on any connected component.

In particular, the integrals depend only on the homotopy class.
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Assume that L is trivial and let ∇T be the implied trivial flat connection on L.

Then ω defined by ω := (∇L − ∇T ) is a 1-form on Q. We have PLγ = e
∫
γ −ωP Tγ . By

assumption, if σ is a path in Q exchanging two particles, then
∫
σ −ω ≡ iπ(mod 2π),

i.e. it is non-zero. But

0 =
∫

Id
−ω =

∫
σσ
−ω = 2

∫
σ
−ω.

Thus, we have that the integral must be zero which contradicts nontrivial holonomy.

Corollary 8. The Fermi line on N
R

3 is nontrivial.

Proof. The Fermi line’s holonomy is the alternating character. Thus it is a nontrivial

line bundle.

Corollary 9. The configuration space of NR3 is orientable if and only if 3 is even.

Proof. A space is orientable if and only if the determinant line of the tangent space

is trivial. That is to say, we need to compute Λ3N (TQ). Let {ei}3i=1 be the standard

basis in R3. Then a basis element of Λ3N (TQ) is
3
∧
i=1

( ∧
q∈q

ei,q); this is defined up to a

sign. In order to define a global basis, we must be able to choose the sign consistently.

Rather than do that, we shall compute the holonomy of this bundle:

3
∧
i=1

( ∧
q∈q

ei,q)
Γσ7→

3
∧
i=1

( ∧
q∈q

ei,σq) = (−1)3|σ| 3
∧
i=1

( ∧
q∈q

ei,q).

That is to say, the induced flat connection has trivial holonomy if and only if 3 is

even. By the above results, we therefore have that Λ3N (TQ) is trivial if and only if 3

is even.

Lemma 11. The following relations hold: b⊗ b = b, f⊗ f = b, f⊗ b = f

Proof. It immediately follows from the fact that the holonomy operators of a tensor

product are the tensor products of the original holonomies. In other words, the char-

acters multiply under tensoring of the bundles.

The following statement and argument is for 3 = 3.
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Lemma 12. Let F be the Whitney sum (direct sum) of the 2 particle Fermi line with

itself. Then F = f⊕ f ' 2
R

3 × C2.

Proof. We start by coordinatizing the covering space of Q := 2
R

3:

Q̂ := R
2,3
6= = R

3 × R+ × S2.

That is to say, we coordinatize the particle system by the center of mass, the distance

between the two particles, and the direction from particle 1 to particle 2. To create the

base space, we identify antipodal points on S2 which corresponds to not knowing which

particle is particle 1. Our plan is to create two non-zero sections of the trivial bundle

Q̂×C2 that satisfy the alternating periodicity condition. We first do this on the sphere

and then extend it to the whole space by constancy in the other coordinates.

Although we shall write it down explicitly, the map from the sphere into sections of

C
2 will be the procedure of taking the columns of the unitary matrix which represents,

in the spin-1
2 representation, a rotation about the line in the sphere, by an angle π.

The point is that the representation is a double cover of the rotation group and the two

differ by a minus sign. Since rotation about π is the same rotation element for a point

on the sphere and its antipode, we expect that this is what we want. Indeed, let the

usual representation with the Pauli spin matrices, as generators of the representation,

be given. Then a rotation about an angle α about the line specified by the point in

the sphere, written as a (x, y, z) vector with the sphere parametrized by the angles

0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π, is p = (sinφ cos θ, sinφ sin θ, cosφ) and it maps to the

unitary matrix, expressed in the basis of σz eigenstates,

ei
α
2
σ·p = cos

α

2
+ iσ · p sin

α

2

= cos
α

2
+ i sin

α

2

 cosφ sinφ cos θ − i sinφ sin θ

sinφ cos θ − i sinφ sin θ cosφ

 .

Thus, if we use the angle α = π and take the columns as the sections, we have, on

S2 × C2,

ψ1(θ, φ) =

 cosφ

eiθ sinφ

 ψ2(θ, φ) =

e−iθ sinφ

− cosφ
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Being the columns of a unitary matrix, or by direct computation, the norm of ψ1 and

ψ2 are both 1, they are orthogonal vectors, they are smooth sections, and they satisfy

ψi(θ + π, π − φ) = −ψi(θ, φ).

More to the point, if we define a new bundle by (p, v) ∼ (−p,−v) where p and −p are

antipodal points, then [ψ1] and [ψ2] form orthonormal sections of the new bundle.1

To go back to the original problem, we define Ψi(x, r, [p]) := [ψi]([p]). These are

sections of F . Since they form a basis at every point, F is trivial.

Lemma 13. Let C be the Whitney sum of the Fermi line for N particles with the trivial

bundle N
R

3 × Cl. Then C is not a trivial bundle, i.e. C = f⊕ Cl 6' N
R

3 × Cl+1.

Proof. This follows from the fact that the determinant line of a tensor product is the

tensor product of the determinant lines, i.e Λmn(E⊗F ) ∼= Λn(E)⊗Λm(F ) where E has

dimension n and F has dimension m.2 Since the determinant line of a trivial bundle is

b, we have that the determinant line of C ∼= f⊗ b. That is to say, Λl+1(C) ∼= f. Hence

it is nontrivial as the determinant line is nontrivial and any trivial bundle has a trivial

determinant line.

Theorem 13. For N = 2, the triviality of the bundles are as follows:

s = 2l s = 2l + 1
2 s = 2l + 1 s = 2l + 3

2

B(2, s) trivial nontrivial nontrivial trivial

F(2, s) nontrivial nontrivial trivial trivial

for l ∈ N.

Proof. The idea of this proof is to decompose each bundle into a sum of Bose and Fermi

lines. We then pair the Fermi lines to make trivial bundles. We are then either left

with a completely trivial bundle or the sum of a trivial bundle with a single Fermi line.

1There is another tempting map which is to take the eigenspinors of the spin angular momentum
operator in the direction represented by p. This fails since under antipodal exchange, the vectors are
exchanged. We wanted to only change the sign.

2This follows from the general identity

Λk(E ⊗ F ) ∼=
k∑
i=0

Λi(E)⊗ Λk−i(F )

where Λ0(·) is defined to be the trivial line bundle.
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Let us start with the Bose bundles. Since we have only two particles, the bundle

is the sum of a symmetric part and an antisymmetric part. The symmetric subbundle

is trivial (a sum of Bose lines), while the antisymmetric part is a sum of Fermi lines.

Thus, the Bose bundle is trivial if and only if the number of Fermi lines is even, i.e. if

the dimension of the antisymmetric part is even. As for the Fermi bundle, its triviality

depends upon the parity of the dimension of the symmetric part of the Bose bundle

since upon tensoring with a Fermi line, the Fermi lines become Bose lines and the Bose

lines become Fermi lines.

More specifically, the Bose bundle B(N, s) may be written as, using the basis wi of

C
2s+1,

B(N, s) =
2s+1⊕
i=1

sp{wiq⊗wiq′}⊕
⊕

1≤i<j≤2s+1

(sp{wiq⊗w
j
q′+w

j
q⊗wiq′}⊕sp{wiq⊗w

j
q′−w

j
q⊗wiq′})

where sp{v} means the linear span of the set of vectors; in this case these are all 1-

dimensional subspaces. Thus it is the sum of 2s + 1 +
(

2s+1
2

)
Bose lines and

(
2s+1

2

)
Fermi lines. Since

(
2s+1

2

)
is odd exactly when s = 2l + 1

2 and s = 2l + 1, we have the

Bose bundle results. For the Fermi bundle F(N, s)(= f ⊗ B(n, s)) we have that it is a

sum of
(

2s+1
2

)
Bose lines and 2s + 1 +

(
2s+1

2

)
Fermi lines as tensoring distributes over

sums. Since 2s + 1 +
(

2s+1
2

)
is odd exactly when s = 2l and s = 2l + 1

2 , we have our

results.

Lemma 14. The determinant line Λn(E) of a flat bundle E has an induced connection

whose holonomy representation is multiplication by the determinant of the corresponding

holonomy operator on E.

Proof. The claim follows immediately from the standard fact that, for any matrix A :

V n → V n, we have that detA satisfies

n
∧
i=1

Aei = detA(
n
∧
i=1

ei)

where each ei ∈ V . Thus, if {ei}ni=1 forms a basis, then detA is determined by the above

equation. Thus, the determinant line’s induced holonomy is given by the determinant

map of the holonomy representation.
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Theorem 14. For N ≥ 2 and 3 ≥ 3, we have that (C4k+2)⊗Q and f ⊗ (C4k+1)⊗Q are

nontrivial bundles.

Proof. We will establish that their determinant lines are nontrivial. In fact, we will show

that the determinant of the parallel transport operator which exchanges two particles

is −1. By the above lemma and the first theorem, that is sufficient to establish our

result. Fix the two positions to be exchanged. Let l be the dimension of the factor

in the tensor product. Ignoring the Fermi line factor, symmetrize and antisymmetrize

on the two factors that are being exchanged. Count how many of each kind there are.

The total number of symmetric elements is (l +
(
l
2

)
) ∗ (l)N−2 while the total number

of antisymmetric elements is
(
l
2

)
∗ (l)N−2. Thus, the bundle without the Fermi line

involved is nontrivial if l is odd and
(
l
2

)
is odd. This occurs when l = 4k+2; for N = 2,

we also have l = 4k + 3. Tensoring with the Fermi line means the resultant bundle is

nontrivial if l is odd and (l +
(
l
2

)
) is odd. This occurs when l = 4k + 2; for N = 2, we

also have l = 4k + 1. We are done.
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Appendix E

On bijective correspondences between Bohmian velocity

fields and wave functions

The PDE for the Bohmian trajectories in Chapter 7 simplified greatly in the situations

in which the second derivative of Q vanished. Indeed, we find in that situation that we

can have multiple initial wave functions which have the same Bohmian velocity fields.

They must have the same phase and their amplitudes must satisfy ∆R1
R1

= ∆R2
R2

+ C,

where C is a constant. It is possible to have multiple L2 solutions of this equation.

These include all known cases in which the system has the property that the same

velocity field corresponds to different initial wave functions.

If the second derivative of Q does not vanish, then the PDE becomes pretty in-

tractable. The right hand side has to be the same in order to produce the same quan-

tum forces. But now we see that the requirement on R is more intensive than just that

equation above, which still must be satisfied. We therefore could speculate that it can

no longer happen. Although we do not see how to derive it from this PDE, we do know

of some other arguments. Two arguments have been done by others; see [49, 7]. We

shall give yet another argument. Although lacking in rigor, it may give an appropriate

picture as to when and why the claim holds.

First, for two positive functions to satisfy the same stationary state equation, we

essentially need one of them to have codimension one with respect to the other. This

follows from energy arguments, i.e. the ground state is positive and the only such wave

function. If there were two, then they could be combined in such a way as to lower

the energy. Actually, one first argues that they must have the same energy; that is to

say, there can only be one energy value with positive solutions. This is easy; indeed,

the functions must be orthogonal if they are eigenstates for the same energy value.
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But two positive functions cannot be orthogonal. That is essentially it. Then, one

can demonstrate that at the same eigenvalue, one can create states of lesser energy.

Therefore, if the potential, the one defining the stationary state equation, is such that

it has a lowest energy state, then we are done.

Second, typically a wave function’s nodal set has codimension 2 since it requires

the vanishing of both the real and imaginary parts. Therefore, for a typical evolution,

one would expect the Schrödinger evolution to instantly take a codimension 1 wave

function into a codimension 2 wave function. There can, of course, be exceptions, but

these must be explained. We therefore expect that the full-time Bohmian velocity field

is generically in bijective correspondence with the initial wave function.
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Appendix F

Supplement to Chapter 7

We start with some useful notations. We denote the set of the first n numbers of the

natural numbers, i.e. {1, . . . n}, by n. We use nk6= for the set of k-tuples, each entry being

distinct, with the entries being elements of n while kn is the set of k-element subsets of

n. We shall use the notation (I), where I is a subset of a canonically ordered set (such

as the natural numbers), to indicate we wish to form an ordered set using the canonical

ordering, e.g. ({1, 5, 3}) := (1, 3, 5). Conversely, if we have an ordered set I, then we

shall use {I} to indicate the set itself. Thus, {} is the inverse of (). In this section,

they will be maps between nk6= and kn. All tensor and wedge products are utilizing the

idea of the set-based tensor product of appendix A. In particular, the ordering in which

things are written down is not relevant; only the labelling is relevant.

We also define an anti-symmetric symbol which is crucial for component formulas.

The symbol εnI is defined to be the sign of the permutation putting the numbers in the

correct order, i.e. taking ((n\{I}), I)→ (n) or ((n\I), (I))→ (n) depending on whether

I is an ordered set or unordered. Just to emphasize, we will be using this symbol both

for ordered and unordered sets.

Let A : V → W be a map between two vector spaces of dimension n. Each vector

space is endowed with a volume vector, say ν for V and ω for W . By a volume vector,

say for V , we mean a non-zero element of
∧n V , which is the 1-dimensional vector space

formed from the totally antisymmetric subspace of the n-fold self-tensor product of V .

By A⊗n, we mean the linear operator acting on V ⊗n taking values in W⊗n defined on

product elements by

A⊗n(⊗
i∈n

ei) = ⊗
i∈n

A(ei).

A key property of A⊗n is that it preserves spaces invariant under permutations. That
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is to say, if Pσ represents the action of a permutation σ on an n-fold self-tensor prod-

uct induced by the permutation acting on the indices, then A⊗nPσ = PσA
⊗n. Thus,

A⊗n(ν) ∈
∧n V since PσA⊗n(ν) = −1σA⊗n(ν) for every permutation σ. This charac-

terizes a volume vector.

We define the determinant of A as the unique number satisfying

A⊗n(ν) =: (detA)ω. (F.1)

If we choose bases {vi} and {wi} such that the volume vectors are the wedge product

of the bases in the given order, i.e. ν =
∧
i∈n vi, then the determinant is the number

satisfying ∧
i∈n

A(vi) =: (detA)
∧
i∈n

wi. (F.2)

In its turn, we find the usual determinant formula

detA =
∑
σ:n↔n

−1σ
∏
i∈n

A
σ(i)
i .

We also note that if V = W , then we can choose ν = ω. This means that the deter-

minant in that case is defined independently of the choice of ν since different choices

correspond to different constants and these constants can be cancelled.

The trace of an operator can also be defined using volume vectors and tensors. But

its definition requires that A is map from V to itself. Then A(i) is defined to be the

operator acting on V ⊗n defined on product elements via

A(i)( ⊗
j∈n

ej) = { ⊗
j∈n\{i}

ej} ⊗A(ei).

That is to say, it is the identity on each factor except the ith factor for which A acts on

that factor. The operator
∑

i∈nA
(i) clearly commutes with permutations. Thus, one

can define the trace of the operator A as the unique number TrA satisfying

∑
i∈n

A(i)(ν) =: (TrA)ν.

In coordinates, we see that

∑
i∈n

A(i)(ν) =
∑
i∈n

{
∧

j∈j∈n\{i}

vj} ∧A(vi).
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Since A(vi) =
∑

k A
k
i vk, we notice that in the ith term of the sum, only Aiivi gives a

non-zero contribution to the wedge product. Thus, we have that the trace is given, in

components, by

TrA =
∑
i

Aii

which is just the usual coordinate formula. Also notice that this definition is indepen-

dent of the volume form chosen and hence any wedge product of a basis will yield the

same result. In other words, the trace is canonically defined.1

We needed to choose a volume form on each space in order to define the determinant.

One way to do this is to specify a metric. Then, up to a sign, we have a canonical volume

vector. This is formed by taking an orthonormal basis and wedging all of the elements

in the basis together. The sign ambiguity comes in by not knowing how to choose which

order to wedge product the vectors together. But, if we want a positive number, then

there is no ambiguity. In fact, given A, we can redefine one of the volume vectors so

that the determinant is positive. Thus, |detA| or just |A| for short, is well-defined.

Note that if we had a map between V and itself, then given any volume vector on

V , we would use the same volume vector on both sides. This gives an unambiguous

determinant which may be negative.

Extending this to manifolds should now be clear. Our setup is that we have a

mapping f : Mk → Nk between two Riemannian manifolds of the same dimension.

Since Dpf : TpM → Tf(p)N , we can ask what is the determinant of Df as a mapping

of the tangent spaces. The volume vectors that we choose are the Riemannian volume

vectors. For M , let ν be the volume form and ω be the volume form for N . Then

|det(Dpf)| =: |Dpf | satisfies

|Dpf |ωf(p) = (Dpf)⊗k(νp)

1The reason that we need A to map V to itself, rather than some other vector space, is that the
identity is crucial in this argument. On the other hand, if A : V → W , then if we choose the volume
vectors ν and ω as well as another map B : V →W , then we can define

TrBA(ω) = (
∑
i∈n

{ ⊗
j∈{n\i}

B} ⊗ (A)i)ν

Taking A = B, we find that the above formula gives us n times the determinant of A. One can also
envision a further generalization involving multiple operators appearing a specified number of times.
This begins to resemble something remarkably similar to minors.
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up to a sign. That completely determines the information. In any coordinate system,

the volume form is
√

detGij
∧
i∈n vi. Thus, the determinant in coordinates is

|Dpf | = |

√
detGijM√
detGijN

∑
σ:n↔n

−1σ
∏
j∈n

∂fσj

∂xj
|

We do not have to worry about orientability as we are concerned only with local prop-

erties of objects which should be non-zero.2

F.1 Derivatives of the determinant

We need to compute derivatives of the volume vector. Our setup is that we have a

map Q with differential DQ acting on the tangent space; we shall suppress t in the

following discussion. The only important fact is that the Riemannian volume vector is

parallel. The reason is that we can choose an orthonormal basis at a point q ∈ Q and

then parallel transport the basis along geodesics. This gives us a basis of orthonormal

vector fields at every point as the inner product is preserved by parallel transport. We

have that the first covariant derivative of these vector fields is zero at q. Thus, at every

point in Q, the Riemannian volume form’s first covariant derivative vanishes. This

means that it is parallel and that the higher derivatives also vanish since these will be

derivatives of a zero tensor.

With that trivial fact established, we can now differentiate the determinant. Let

A := DQ. We start with

|A|ω = A⊗n ◦ ν.

Recall that composition essentially means that we tensor these objects together and

then contract the indices. Since covariant derivatives commute with contractions, we

have that

D[|A|]ω + |A|D[ω] = D[A⊗n] ◦ ν +A⊗n ◦D[ν].

2If we were concerned about the Maslov index and the determinant vanishing, we would choose
an initial volume vector in a neighborhood about the initial point and parallel transport the volume
vector along the curve. As we pass through a zero of the determinant, we would pickup a phase and
appropriately order the volume vector to have a positive determinant.
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Since the volume forms are parallel, this reduces to

D[|A|]ω = D[A⊗n] ◦ ν.

Continuing in this fashion, we have

Dm[|A|]ω = Dm[A⊗n] ◦ ν.

One can then use the product rule to express Dm[A⊗n] in terms of the factors. If one

does this and then expresses it in coordinates, we find

(D|i|[det(A)])k1···ki =
∑

PR∈PR(i,n)

∑
σ:n↔n

−1σ
∏
j∈n

A
σj
jkrj(1)···krj(|rj |)

where PR(i, n) is the set of product rule diagrams of length i with height n, RPR is

the set of nonempty rows, and rj is the jth row. The extra subscripts indicate covariant

differentiation slots. This is the same formula as in the Euclidean case; it can also be

written in terms of minors, although we shall not do that here.

F.2 The continuity equation

The continuity equation is
∂ρ

∂t
+∇ · (ρv) = 0

where ρ : Q → R and v is a time-dependent velocity field on Q. We assume that

Q(x0, t) describes the family of integral curves of the velocity field. Let ρ0 be given.

Then we claim that the solution to the continuity equation, as said in Chapter 7, is

ρt(x) = ρ0(Q−1(x, t))|DQ−1(x, t)|.

To understand this, we note that under a mapping f , a density µ on the image is

mapped to a density on the domain via µ̃(x) := µ(f(x))|Df |(x). This is the definition

which gives
∫
A µ̃ =

∫
f(A) µ. The Jacobian factor is what is needed for the change of

variables. This is the picture of why it is true.

Direct verification is as follows. Define h(x, t) := Q−1(x, t). Then ρ(x, t) :=

ρ0(h(x, t))|Dh|(x, t). Fix (x, t) and let ω be the Riemannian volume vector at h(x, t)

while ν is the volume vector at x. The full derivative of h is D[h] : TxQ⊕R → Th(x,t)Q.
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As this is a direct sum of two bundles, we define Dx[h] : TxQ → Th(x,t) by restricting

D[h] to the subspace Tx. We define ḣ = ∂h
∂t in a similar fashion except that, by evaluat-

ing at 1, we can say that ḣ ∈ T(h(x,t). Additionally, please note that Q̇(h(x, t)) ∈ TxQ.

We shall also take the liberty of using various equivalences such as ∇f · v = D[f ](v)

without necessarily mentioning them.

By using the chain rule, we have

∂ρ

∂t
= |Dh|Dh[ρ0](ḣ) + ρ0(h)

∂[|Dh|]
∂t

and

∇ · [ρ∇[S]]) = |Dh|Dh[ρ0] ◦Dx[h] ◦ v + ρ0(h)Dx[|Dh|] ◦ v + ρ∇ · v.

Since h(Q(x0, t), t) = x0 and Q̇(x0, t) = ∇S(Q) by definition , we can eliminate two

terms by noting

ḣ(Q, t) +DQ[h] ◦ Q̇ = 0

ḣ(Q, t) = −DQ[h] ◦ v(Q)

|Dh|Dh[ρ0] ◦ ḣ = −|Dh|Dh[ρ0] ◦ (Dx[h] ◦ v)

Since contractions commute, we have the cancellation of the first terms.

Replacing Q with x and differentiating, we have that

Dx[ḣ] = −D2
x[h](v)−Dx[h](Dxv).

Using the definition of determinant and following the discussion of the derivative of the

determinant, we find that

∂[|Dx[h]|]
∂t

ω =
∑
i

{Dx[h]⊗n\i ⊗Dx[ḣ]}ν.

Combining these two equations, we find,

∂[|Dx[h]|]
∂t

ω =
∑
i

{Dx[h]⊗n\i ⊗ {−D2
x[h](v)−Dx[h](Dxv)}}ν.

Again by a simple computation, we also have,

Dx[|D[h]|](v)ω =
∑
i

{Dx[h]⊗n\i ⊗D2
x[h](v)}ν
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which replaces part of the above equation.

To eliminate the term with the derivative of v, one should recall the definition of the

trace of a matrix. Additionally, we shall view Dv as a matrix as it takes in a tangent

vector and produces a tangent vector. We therefore have∑
i

{Dx[h]⊗n\i ⊗ {Dx[h](Dxv)}}ν = Dx[h]⊗n
∑
i

(Dv)(i)(ν)

= Dx[h]⊗n(Tr(Dv)ν)

= ∇ · v{Dx[h]⊗nν}

= ∇ · v{|D[h]|}ω}.

We therefore conclude that

∂[|Dx[h]|]
∂t

+Dx[|D[h]|](v) +∇ · v{|D[h]|} = 0

Thus, all of the terms in the continuity equation do vanish.

F.3 The Hamilton-Jacobi equation

We claim that the Hamilton-Jacobi equation’s solution is the action integral integrated

over the trajectories. More precisely, let V be the potential, Q the set of trajectories,

and S0 the initial action function. We are assuming that Q is invertible and that

Q̇(x0, 0) = ∇S0(x0), and Q̈(x0, t) = −∇V (Q(x0, t)).

Then we claim that

S(x, t) = S0(Q−1(x, t)) +
∫ t

0
[
1
2
g(Q̇, Q̇)− V (Q)](Q−1(x, t), s)ds (F.3)

is the solution to the H-J equation. To establish this, first note that

S(Q(x0, t), t) =: S̃(x0, t) = S0(x0) +
∫ t

0
[
1
2
g(Q̇, Q̇)− V (Q)](x0, s)ds

satisfies, for fixed x0,

dS̃

dt
(x0, t) = L(x0, t) := {1

2
g(Q̇, Q̇)− V (Q)}(x0, t) (F.4)

as a trivial application of the fundamental theorem of calculus establishes. On the other

hand,
dS(Q(x0, t), t)

dt
=
∂S

∂t
(Q, t) +DQ[S] ◦ Q̇(x0, t). (F.5)
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The main claim, which requires effort to prove, is that

∇S(Q(x0, t)) = Q̇(x0, t) (F.6)

implying

∇S · ∇S = DQ[S] ◦ Q̇d = g(Q̇, Q̇).l (F.7)

Combining (F.7), (F.4), and (F.5), we find

{∂S
∂t

+∇S · ∇S − (
1
2
∇S · ∇S)− V )}(Q(x0, t), t) = 0

which, after replacing Q with x, is the Hamilton-Jacobi equation demonstrating that

our claimed solution is a local solution to the Hamilton-Jacobi equation whenever Q is

locally invertible.3

All that remains to show is that if S is defined by (F.3) and that Q is the family

of classical trajectories under the potential V whose initial velocity field is given ∇S,

then (F.6) holds. That is to say, the constraint is preserved. To prove this, we use the

chain rule. We start with noting that

Dx0 [S̃](x0, t) = Dx0S0(x0) +
∫ t

0
{g(Dx0 [Q̇], Q̇)−DQ[V ] ◦Dx0 [Q]}(x0, s)ds

and applying the product rule

dg(Q̇,Dx0 [Q])
dt

= g(Q̈,Dx0 [Q]) + g(Q̇,Dx0 [Q̇])

setting us up for an integration by parts leading to

Dx0 [S̃](x0, t) =Dx0S0(x0) + g(Q̇,Dx0 [Q])|t0

−
∫ t

0
g(Q̈,Dx0 [Q])−DQ[V ] ◦Dx0 [Q](x0, s)ds

= (Dx0S0(x0)− g(Q̇(x0, 0), Dx0 [Q](x0, 0)) + g(Q̇,Dx0 [Q])(x0, t)

−
∫ t

0
g(Q̈,Dx0 [Q])−DV ◦Dx0 [Q](x0, s)ds.

3In Chapter 7, algorithm A1 requires the solution to an equation of the form ∂S
∂t

+ ∇S · v =
1
2
g(v,v)− V . From the above discussion, one can immediately see that integrating the right hand side

over the integral curves of v will yield the solution.
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As Dx0 [Q](x0, 0) = Id, the initial conditions lead to the cancellation of the first two

terms in the above equation. The differential of Q can be pulled out to the right in the

integrand leading to

(g(Q̈, )−DV ) ◦Dx0 [Q](x0, s) = 0 ◦Dx0 [Q](x0, s)

since Qx0(t) is a classical trajectory with potential V . The integral’s vanishing leaves

us with one term. To finish the claim, note that, evaluating at (x, t),

Dx[S] = DQ−1 [S̃] ◦Dx[Q−1] = g(Q̇,DQ−1 [Q] ◦Dx[Q−1]) = g(Q̇, Id).

Taking x = Q, this establishes (F.6). Thus, S is a solution to the Hamilton-Jacobi

equation under the invertibility assumption of Q.

F.4 Semi-classical asymptotics and the Maslov index

The idea of semi-classical asymptotics in quantum mechanics is quite well known and

we shall be brief. A few references are [6, 41, 19] The basic idea is to take ~ → 0.

Setting it equal to 0 leads to the classical Hamilton-Jacobi equation. The continuity

equation can then be solved using the classical trajectories. When ~ is considered a

small parameter in the problem, this is expected to be a good approximation to the

solution. An immediate problem of this method is that the classical trajectories are

not generically invertible. Thus, the Hamilton-Jacobi equation does not have a global

solution. Undeterred by this minor inconvenience, one can do some Fourier analysis

and, by applying the method of stationary phase, we arrive at

ψn(x, t) :=
∑

{yj |Qn(yj ,t)=x}

R[Qn, R(·, 0)](yj , t)ei(S[Qn,Un−1,S(·,0)](yj ,t)−π2 µj).

In words, we are assuming that in a neighborhood of each point, the function Q is locally

invertible. We look at the inverse image and generate the S along the trajectories using

the action formula. We append the Jacobian correction factor and do a sum over the

terms. It is important that the terms have the right phase which is accounted for by

the Maslov index µ over the trajectory. Although it is a very important symplectic

geometric object associated with Lagrangian submanifolds, we shall view it in a very
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simple-minded way. The factor is just the number of zeroes of the determinant of Q

that the trajectory crosses. The zeroes correspond to caustics and these are the places

where invertibility of Q begins to fail. The reason this factor arises from our perspective

is clear. Remove the absolute value signs around the determinant and the square root

will then pick up factors of i (or −i) as a trajectory goes through a zero. Noticing

the multiplicity arises by considering a slight perturbation of the surrounding flow and

showing that the overall phase factor is unaffected by the perturbation.
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[23] D. Dürr, S. Goldstein, R. Tumulka, and N. Zangh̀ı. Bohmian mechanics and
quantum field theory. quant-ph/0208072, 2003.
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[27] D. Dürr, S. Goldstein, and N. Zangh̀ı. On the role of operators in quantum me-
chanics. in preparation, 2003.

[28] J. Eells and L. Lemaire. Selected topics in harmonic maps, volume 50 of CBMS
Regional Conference Series in Mathematics. Published for the Conference Board
of the Mathematical Sciences, Washington, DC, 1983.

[29] A. Galindo and P. Pascual. Quantum mechanics. II. Texts and Monographs in
Physics. Springer-Verlag, Berlin, 1991. Translated from the second Spanish edition
by L. Alvarez-Gaumé.
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